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Abstract

Bruno, Hugo Bastos de Sá ; Martha, Luiz Fernando Campos Ra-
mos (Advisor); Menezes, Ivan Fábio Mota (Co-Advisor). Return-
Mapping Algorithms for Associative Plasticity Using Co-
nic Optimization. Rio de Janeiro, 2020. 103p. Tese de doutorado
– Departamento de Engenharia Civil e Ambiental, Pontifícia Uni-
versidade Católica do Rio de Janeiro.

This work presents a mathematical programming approach for elasto-
plastic constitutive initial boundary value problems. Considering associative
plasticity, the local discrete constitutive equations are formulated as conic
programs. Specifically, it is demonstrated that implicit return-mapping sche-
mes for well-known yield criteria, such as the Rankine, von Mises, Tresca,
Drucker-Prager, and Mohr-Coulomb criteria, can be expressed as second-
order and semidefinite conic programs. Additionally, a novel scheme for the
numerical evaluation of the consistent elastoplastic tangent operator, based
on a first-order parameter derivative of the optimal solutions, is proposed.

Keywords
Return-Mapping Algorithms; Elastoplastic Analysis; Differential-

Algebraic Equations; Conic Programming; First-Order Parameter Deriva-
tives.
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Resumo

Bruno, Hugo Bastos de Sá ; Martha, Luiz Fernando Campos Ramos;
Menezes, Ivan Fábio Mota. Algoritmos de Retorno à Superfí-
cie para Plasticidade Associativa Utilizando Programação
Cônica. Rio de Janeiro, 2020. 103p. Tese de Doutorado – Depar-
tamento de Engenharia Civil e Ambiental, Pontifícia Universidade
Católica do Rio de Janeiro.

Esse trabalho apresenta uma abordagem baseada em programação
matemática para a solução de problemas de valor inicial de contorno cons-
titutivo elastoplástico. Considerando a plasticidade associativa, as equações
constitutivas locais, em sua forma discreta, são formuladas como problemas
de otimização cônica. Especificamente, é demonstrado que métodos implí-
citos de retorno a superfície para os critérios mais conhecidos da literatura,
como o de Rankine, von Mises, Tresca, Drucker-Prager e Mohr Coulomb, po-
dem ser expressos como problemas de otimização cônica de segunda ordem
e semidefinida. Além disso, um novo método numérico para a determinação
do operador elastoplástico consistente, baseado na derivada paramétrica de
primeira ordem das soluções ótimas, é proposto.

Palavras-chave
Algoritmos de Retorno à Superfície; Análise Elastoplástica; Equações

algébricas-diferenciais; Programação Cônica; Derivadas paramétricas de
primeira ordem.
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There is no other way around hard word, em-
brace it.
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1
Introduction

The theory of plasticity involves the study of bodies which are stressed
beyond the limit of the elastic range and, consequently, undergo permanent/-
plastic deformations. Thus, it may be regarded as an extension of the theory
of elasticity, which deals with structures subject to stresses under the elas-
tic limit, i.e., structures which can carry the load program without suffering
plastic deformations.

According to Chen & Han [1], the mathematical foundations of plasticity
dates back to the beginning of the 19th century, when Tresca first published
a series of papers proposing the conditions which dictates the emergence of
plastic deformations in metals, the so-called maximum shear stress condition.
Later on, around 1870, St. Venant would then devise the mathematical foun-
dations of plasticity which described the constitutive relations for elastoplastic
materials under plane stress and, in that same year, Levy extended such formu-
lation for the general 3D stress state. In 1913 von Mises published his famous
paper on the J2 -theory for metals, which included an yield condition based
on the maximum distortion energy. The constitutive equations, developed by
St.Venan, Levy, and von Mises, were extended to the plane continuum case
by Prandtl, in 1924. The generalization to three dimensions was carried out
by Reuss, in 1930. Von Mises, in 1928, published a paper which discussed
the relation between the direction of plastic strain and smooth yield surfaces,
thus introducing the flow rule concept for regular yield criteria. In 1933, Reuss
published studies in which appropriate flow rules for singular yield surfaces,
such as Tresca’s, were formulated. The development of incremental constitutive
equations for materials with hardening behavior was initiated by Prandtl, in
1928. A few years later, in 1938, Melan devised incremental relations for hard-
ening materials with smooth yield surfaces. Independently, in 1949, Prager
published a study proposing a general framework for elastoplastic constitutive
relations involving materials with smooth yield surfaces. In this remarkable
work, Prager also formulated the loading/unloading conditions, i.e., the con-
ditions which established when plastic flow may occur. Additionally, Drucker
devised uniqueness theorems for the solution of elastoplastic boundary value
problems (BVPs) and recognized the interrelationship between convexity of
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Chapter 1. Introduction 12

yield surfaces and the normality condition.
Fundamental theorems of limit analysis, the so-called upper- and lower-

bound theorems, were stated in papers published by Drucker [2], Greenberg
[3] and Prager [4], in 1951 and 1952, under the assumption of elastic-perfectly
plastic behavior. Under the hypothesis of rigid-ideally plastic materials, Hill
[5] developed similar theorems for the evaluation of load bearing capacity of
elastoplastic structures. The application of these theorems for the analysis
of beams, frames, plates and shells were carried out in the following years,
including the analysis of reinforced concrete and metallic structures.

The generalization of elastoplastic constitutive relations for singular yield
surfaces was conduct by Koiter [6], back in 1953. His contribution allowed
the employment of multiples functions for the determination of general yield
criteria. His studies showed that, in the case of singular yield surfaces, the
plastic increment may be expressed as the combination of contributions from
each active yield surface.

The growing interest from industry in simulation of solid mechanics
involving elastoplastic materials has led to a rapid and extensive development
of numerical tools for the solution of practical problems in plasticity. These
techniques are currently applied to a wide variety of engineering problems,
ranging from stress analysis in structures and soil mechanics, to the simulation
of manufacturing processes such as metal forming. According to Souza Neto
et al. [7], other less conventional applications includes food processing, mining
operations and simulation of biological tissue behavior. At the present time of
this thesis, the finite element method (FEM) is arguably the most commonly
adopted numerical scheme in non-linear quasi-static solid mechanics. The
computational techniques, developed so far, are capable of accurately predict
elastoplastic phenomena of real life applications. Problems involving extreme
large strains and complex constitutive models are now amenable to be solved
in a routinely manner.

An emerging area of study on this subject regards the application of
mathematical programming (MP) techniques in the formulation and numeri-
cal solutions of elastoplastic problems. From a theoretical point of view, the
mathematical foundations of MP have been recognized as a suitable tool in
introducing the formulation of the theory of plasticity [8]. Furthermore, the
development of modern numerical optimization algorithms has provided at-
tractive alternatives for the construction of new and efficient numerical tech-
niques in elastoplastic analysis. In particular, conic programming (CP) has
been successfully applied in a number of recent works involving applications of
limit [9], shakedown [10] and incremental elastoplastic analyses [11]. Although
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Chapter 1. Introduction 13

many studies have been published in this area, the implementation of incre-
mental elastoplastic analysis using CP is still rare, thus it deserves its own
attention.

1.1
Scope and aim

This work investigates the application of MP techniques for rate-
independent elastoplastic analyses of structures. MP formulations of 2D/3D
continuum structures considering complex constitutive models are introduced
within the framework of the FEM. Specifically, the development of a numerical
framework for the solution of the local constitutive initial value problem (IVP)
based on CP is introduced. Although such scheme is restricted to associa-
tive plasticity, it is general in the sense that singular and multisurface yield
criteria can be taken into account in a straightforward manner and it also
allows the consideration of both isotropic and kinematic nonlinear hardening
models. Additionally, it is shown that the consistent elastoplastic tangent oper-
ator (CETO) may be numerically evaluated according to a first-order param-
eter derivative of the corresponding CP problems’ solutions. Compared with
traditional return-mapping algorithms (RMA), such numerical scheme for the
evaluation of the CETO relieves the burden of obtaining symbolic derivatives
of the nonlinear elastoplastic constitutive equations, thus simplifying the im-
plementation of complex models, specially if non-smooth yield functions are
considered. Additionally, by simply suppressing the corresponding stress com-
ponents in the optimization problem formulation, the proposed framework is
able to handle the case of constrained stress states in a straightforward man-
ner. It is worth to note that for traditional RMA the simple case of plane stress
requires specific designed algorithms which handles the stress constraint as an
additional restriction to the elastoplastic equations [7].

Objectives

The main objectives of this thesis are:

– Develop FEM codes for the elastoplastic analysis of 2D/3D continuum
problems considering various constrained stress states. The main feature
of the proposed implementation is the employment of CP algorithms for
the solution of local constitutive elastoplastic IVPs and the evaluation of
CETOs as a first-order parameter derivative of the optimal solutions.
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– Provide a dictionary of transformation of complex yield criteria into conic
inequalities, thus allowing the local constitutive IVPs to be solved as CP
problems.

– Assess the accuracy and robustness of the proposed codes by simulation
of elastoplastic benchmark problems commonly found in the literature.

1.2
Literature review

The early works on MP approaches for incremental elastoplastic anal-
ysis encompass frameworks based on general nonlinear programming such as
quadratic [12], sequential quadratic [13], and convex programming [14]. One of
the pioneers works on this subject proposed the employment of MP techniques
of the elastoplastic analysis of structural slabs [15]. A notable contribution
to this area is attributed to Simo & Taylor [16] which presented a consistent
variational formulation for associative plasticity based on a complementary
functional involving the Lagrangian potential that is related to the principle
of maximum plastic dissipation (PMPD). Based on this result, and by employ-
ing a mixed FEM formulation, the global equilibrium equations are reduced to
a convex MP problem in which the consistency condition and hardening law
are enforced at a point-wise level, whereas the flow rule is enforced in a weak
sense.

Following this variational formulation, in [17] Krabbenhoft et al. pro-
pose a primal-dual interior-point algorithm for the solution of rate-independent
elastoplasticity problems considering small deformations and in [11] the same
authors present the formulation and solution of some plasticity problems as
conic programs. In another remarkable work [12], Maier demonstrates two
extrema theorem which relate the incremental elastoplastic analysis to a
quadratic programming (QP) problem, under the normality condition. The
first theorem expresses each increment of the analysis as a minimum opti-
mization problem in which the variables are given by the stresses and plastic
multipliers. Alternatively, the second theorem express each increment as a
maximum optimization problem in which the variables are comprised of the
displacements and plastic multipliers. Both theorems are presented in contin-
uum and discretized versions and both rely on the introduction of a quadratic
functional for which the Karush-Kuhn-Tucker (KKT) conditions leads to the
enforcement of equilibrium; compatibility; and the elastoplastic constitutive
equations. However, these theorems only hold for yield criteria which are given
as the intersection of affine functions. Therefore, in order to model constitutive
laws based on nonlinear yield surfaces an approximation is required. Follow-

DBD
PUC-Rio - Certificação Digital Nº 1712782/CA
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ing this idea, Pereira et al. [18] introduce a force method approach for the
elastoplastic analysis for frames using QP.

An alternative approach is presented in [19] in which Christensen exposes
an MP approach for the solution of J2 -plasticity problems with linear isotrop-
ic/kinematic hardening models. Based on the PMPD, the constitutive law is
restated as a set of non-smooth equations. By considering both the displace-
ments and deviatoric stresses as variables, the global nonlinear equations are
reformulated as a system of unconstrained non-smooth equations which enforce
both equilibrium and constitutive equations in a strong form. The solution of
such system is sought by means of a non-smooth Newton method [20]. Alter-
natively, in [21] the local elastoplastic equations are sought as the solution of a
MP problem related to a discrete version of the PMPD. The numerical solution
of such MP problems is conducted by general nonlinear optimization methods
which unfortunately impairs the consideration of singular yield criteria.

In a recent study [22], Zhang et al. propose an MP approach towards the
solution of rate-independent elastoplasticity in small strains by formulating
the nonlinear equilibrium equations as cone complementary problems. It is
shown that problems involving von Mises and Drucker-Prager criteria with
non-associative flow rules and linear isotropic-kinematic hardening models may
be formulated as second-order cone complementarity problems (SOCCPs). The
local constitutive equations are enforced in a weak sense by discretizing the
plastic multiplier vectors within each element. In light of such discretization,
the global nonlinear equations of equilibrium are reformulated as an SOCCP
for which the solution is sought by means of a semi-smooth Newton algorithm
[23].

In the recent years, CP has been acknowledged as a powerful method
for the solution of elastoplastic constitutive equations via the MP approach
[14, 24]. The suitability of CP programming stems from the fact that many of
the yield criteria used in real-world simulations are amenable to be transformed
into conic constraints. For instance, in [25] Bisbos et al. present the cast of
numerous yield criteria into second-order and semidefinite conic constraints.
Moreover, recent developments on numerical methods for second-order conic
programming (SOCP) [26] and semidefinite programming (SDP) [27] have
provided efficient and robust algorithms for the solution of CP problems. Very
recently, the extension of CP to the case of the exponential and power cones
[28] have been proposed and implemented in several optimization codes [29],
[30]. Although such improvement allows to enlarge the range of yield criteria
which may be represented as conic constraint, it appears that such possibility
has not been investigated in the literature yet.
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Arguably, the majority of applications of CP in plasticity are related
to limit [31, 32, 33, 34, 9, 35, 36, 37] and shakedown analyses [38, 10,
39]. However, many works involving the application of SOCP and SDP for
incremental elastoplastic analysis have been published in recent years. For
instance, following the variational foundations presented in [16], a general
formulation of incremental elastoplastic analysis within the framework of CP
was presented in [14] for a perfectly plastic model. With similar considerations,
Yonekura & Kanno [24] restated each step of the elastoplastic analysis as
an SOCP problem considering the von Mises criterion with both kinematic
and isotropic linear hardening behaviors. It is important to stress out that
the main applications of MP techniques in plasticity problems consists in
formulating the nonlinear global equilibrium equations as a single optimization
problem. Although this concept leads to a highly efficient and robust method,
the consideration of large displacement and finite strains is often overlooked.
Alternatively, the approach proposed in this work is based on the solution of
local elastoplastic constitutive equations by means of CP algorithms, thus in
the global sense it is similar to traditional state-update procedures. Therefore,
just like in conventional elastoplastic FEM approaches, the proposed scheme
allows large displacements as well as finite strains to be implemented in a
straightforward fashion.

1.3
Organization

This thesis is organized as follows. Chapter 2 gives a brief exposition
of CP and introduces the main properties of SOCP and SDP, including
its first-order parameter derivative formulations. Chapter 3 introduces the
continuum constitutive equations of associative plasticity as a consequence
of the PMPD in its rate form. Based on this derivation, the equivalence
between the incremental form of the local constitutive equations and the KKT
conditions of a discrete counterpart of the PMPD is established. Chapter 4
introduces the finite element discretization employed in the formulation of the
incremental discrete BVP in nonlinear solid mechanics and briefly presents the
Newton-Raphson (N-R) scheme for the solution of the nonlinear equilibrium
equations. In Chapter 5 it is shown that a complete state-update procedure
for associative plasticity may be formulated as a CP problem. Based on
a first-order parameter derivatives of such CP problems, a novel numerical
scheme for the evaluation of CETOs is also presented. The accuracy of the
proposed approach is assessed in Chapter 6 by constructing iso-error maps for
different elastoplastic models and comparing the results to traditional RMA
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codes. Additionally, numerical experiments are conducted to investigate the
robustness and efficiency of the proposed methodology in solving benchmark
BVPs commonly found in the literature. Conclusions are drawn in Chapter 7
along with the proposal of future work and developments.
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2
Conic programming

CP constitutes the class of MP problems in which one seeks to optimize a
linear objective function subjected to a constraint set given as the intersection
of an affine subspace with a proper cone (convex, pointed, closed, and with a
nonempty interior). A general CP problem may be written as

min cTx
s.t. Ax = b

x ∈ K
, (2-1)

where c ∈ Rn denotes the objective vector, x ∈ Rn represents the design
variables, Ax = b is a m × n linear system of equations, and K is a proper
cone, as depicted in Figure 2.1.

0

Figure 2.1: A proper cone K ⊂ R2.

Owing to the partial ordering properties of proper cones [40], it is
possible to develop a conic duality theory that closely connects CP to linear
programming (LP). In the conic case, the dual problem to (2-1) is given as

max bTy
s.t. ATy + z = c

z ∈ K∗
, (2-2)

where y ∈ Rm and z ∈ Rn are the dual variables, and K∗ is the dual cone to
K, i.e.,

K∗ = {z |〈z,x〉 ≥ 0 ∀x ∈ K} . (2-3)
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PUC-Rio - Certificação Digital Nº 1712782/CA



Chapter 2. Conic programming 19

90º

90º

Figure 2.2: The dual cone K∗ to K.

By construction of the dual problem (2-2), the following theorem holds
in CP.

Theorem 2.1 (Weak Duality Theorem) Given any dual feasible solution
(y, z) to (2-2) and any primal feasible solution x to (2-1), then

cTx− bTy ≥ 0. (2-4)

In other words, the optimal value to (2-2) is a lower bound to the optimal value
of (2-1), exactly as in the LP case. However, owing to the nonlinear geometry of
general CP problems, a word-by-word extension the LP strong duality theorem
is not possible. Nonetheless, the following slightly weaker statement holds for
CP.

Theorem 2.2 (Strong Duality Theorem) If both primal (2-1) and dual
(2-2) problems have strictly feasible solutions (x ∈ int K, z ∈ int K∗), then they
present optimal solutions x∗ and (y∗, z∗), respectively, and attain the same
optimal value, i.e.,

cTx∗ = bTy∗ =⇒ x∗Tz∗ = 0, (2-5)

where the value xTz is the so-called duality gap which follows from the same
identity as in LP, i.e.,

cTx− bTy =
(
yTA + zT

)
x− xTATy = xTz. (2-6)

Owing to Theorem 2.2, it is straightforward to obtain the optimality
conditions for a general CP problem, i.e.,
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Chapter 2. Conic programming 20

Ax = b, x ∈ K
ATy + z = c, z ∈ K∗

xTz = 0
, (2-7)

where the duality gap vanishing condition, expressed in the last equation, is
known as the complementary slackness condition.

LP, convex QP, SOCP and SDP are all instances of CP. Each of
these class of problems are distinguished by the underlying structure of the
conic constraint associated with the problem. Figure 2.3 depicts the hierarchy
between such subfields of CP.

LPConvex
QPSOCPSDPCP

Figure 2.3: Conic programming subfields.

In the following, a brief exposition of LP within CP theory is presented.
Such introduction is intended to show the similarities between LP and more
general CP problems, in particular SOCP and SDP.

2.1
Linear Programming

A general LP problem, in its standard form, may be expressed in the
following primal and dual versions

min cTx
s.t. Ax = b

x ≥ 0

max bTy
s.t. ATy + z = c

z ≥ 0
. (2-8)

The resemblance between (2-8) and (2.3) is clear, the only difference given by
the inequality instead of the conic constraint. However, by taking the R+ cone
into account, i.e.,

R+ = {t ∈ R |t ≥ 0} , (2-9)
along with is dual

R+
∗ = R+ (2-10)

it is straightforward to expressed (2-8) as a CP problem, i.e.,
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min cTx
s.t. Ax = b

x ∈ Rn
+

max bTy
s.t. ATy + z = c

z ∈ Rn
+

. (2-11)

An important consequence of the self-duality of R+ leads to the following
lemma.

Lemma 1 (LP complementary slackness condition) Let x, z ∈ Rn
+,

then the slackness condition holds if and only if xizi = 0, i.e., when either
xi = 0 or zi = 0 ∀i.

Proof. The proof follows from the simple statement

xTz =
∑
i

xizi = 0 =⇒ xizi = 0 ∀i. (2-12)

Otherwise, the sum would be positive. Conversely, if either xi = 0 or zi = 0
∀i, then, obviously, xTz = 0. �

This equivalent form of the slackness condition allows us to rewrite the
optimality conditions for an LP problem as an N × N*∗ system of nonlinear
equations constrained by the inclusion conditions x, z ∈ R+, i.e.,

Ax = b, x ∈ Rn
+

ATy + z = c, z ∈ Rn
+

xTz = XZe = 0
, (2-13)

where X = diag (x1, ..., xn), Z = diag (z1, ..., zn), and eT = [1, ..., 1].
Although the same optimality conditions can be obtained by simply

applying the first-order necessary conditions theorem for general nonlinear
optimization [41], the development outlined above should shed lights on
the close relationship between LP and CP. The same steps made in the
development of LP are followed for both SOCP and SDP.

2.2
Second-Order Conic Programming

SOCP constitutes the class of problems in which the conic constraint is
given in terms of the second-order cone, also known as the ice-cream or Lorentz
cone, defined as

CSOC = {x ∈ Rn | x1 ≥ ‖x2:n‖ , x1 ≥ 0} . (2-14)

Owing to its self-duality [42], the primal and dual problems corresponding to
an SOCP problem are expressed as

∗* N = 2n + m.
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min cTx
s.t. ATx = b

x ∈ CSOC

max bTy
s.t. ATy + z = c

z ∈ CSOC
. (2-15)

Likewise the LP case, it is possible to express the complementary slack-
ness condition of SOCP problems with an enlarged system of equations, i.e.,

Lemma 2 (SOCP complementary slackness condition) Let x, z ∈
CSOC, then the slackness condition holds if and only if Arw(x)Arw(z)e = 0,
with

Arw(v) =
 v1 vT

2:n

v2:n v1Id

 , v2:n =


v2
...
vn

 , e =


1
0
...
0

 , (2-16)

where Id is the identity matrix of an appropriate size. Equivalently,

x, z ∈ CSOC , xTz = 0 ⇐⇒
(i) x1z1 + xT

2:nz2:n = 0
(ii) x1z2:n + z1x2:n = 0

. (2-17)

Proof. See Appendix A. �

Owing to Lemma 2, it is possible to express the optimality conditions of
an SOCP problem as

Ax = b, x ∈ CSOC

ATy + z = c, z ∈ CSOC

xTz = XZe = 0
, (2-18)

where X = Arw(x), Z = Arw(z), and eT = [1 0 · · · 0].

2.3
Semidefinite Programming

In the SDP case, the conic constraint is given in terms of the positive
semidefinite cone CPSD, which represents the space of all positive semidefinite
matrices, i.e.,

CPSD = {X ∈ Sn|X � 0} , (2-19)
where Sn represents the space of all n × n real symmetric matrices and �
denotes

Y � Z ⇐⇒ wT(Y − Z)w ≥ 0 ∀w ∈ Rn. (2-20)
An SDP may thus be expressed as

min 〈C,X〉
s.t. 〈Ai,X〉 = bi

X ∈ CPSD

max bTy
s.t. ∑m

i=1 yiAi + Z = C
Z ∈ CPSD

, (2-21)
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where 〈·, ·〉 is the standard inner product of real matrices, i.e.,

〈X,Y〉 =
n∑
i=1

n∑
j=1

XijYij = tr(XTY), (2-22)

and the self-duality of the positive semidefinite cone [43] is implied.
At a first glance, the SDP problem (2-21) does not look like a CP problem

as in (2-1). Therefore, in order to express it in a standard form, the same
notation employed in [44] is adopted herein, i.e.,

“Let A be an m× n matrix. Then, vec (A) is an mn vector made up of
the columns of A stacked on top of each other. Furthermore, if v is an mn

column vector, Matm×n(v) is an m×n matrix that collects the components of
v column-wise.”

Based on these definitions, the linear constraints in (2-21) may be
restated as 〈Ai,X〉 = bi (i = 1, ...,m) ⇐⇒ Ax = b

m∑
i=1

yiAi + Z = C ⇐⇒ ATy + z = c
, (2-23)

where x = vec (X), z = vec (Z), c = vec (C), and A ∈ Rm×n2 is such that its
ith-row is given by vec (Ai). Moreover, it is clear that 〈C,X〉 = cTx.

Following these results, the SDP problem (2-21) may be rewritten in the
following standard form

min cTx
s.t. Ax = b

x ∈ CPSD

max bTy
s.t. ATy + z = c

z ∈ CPSD
, (2-24)

where CPSD is expressed in its vectorial version, i.e.,

CPSD =
{
x ∈ Rn2|Matn×n (x) � 0

}
. (2-25)

In the SDP case, the complementary slackness condition may be enlarged
to an N ×N* † system of equations, as shown in the following Lemma 3.

Lemma 3 (SDP complementary slackness condition) Let X,Z ∈
CPSD, then the slackness condition holds if and only if vec (XZ) = 0.
Equivalently,

x, z ∈ CPSD, xTz = 0 ⇐⇒ XZ = 0. (2-26)

Proof. See Appendix B. �

Lemma 3 allows to express the optimality conditions fo an SDP problem as
†* N = 2n2 + m.
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Ax = b, x ∈ CPSD

ATy + z = c, z ∈ CPSD

vec (XZ) = 0.
(2-27)

2.4
First-order parameter derivatives of conic programs

The sensitivity of optimal solutions x∗ (ζ) of a general nonlinear op-
timization problem, with respect to a given data perturbation ζ, is inves-
tigated in [45]. In such work Fiacco demonstrates that, under some con-
straints qualifications, differentiability of the objective function, and second-
order sufficient conditions, the implicit function theorem can be applied in
order to show that there exists a unique once continuously differentiable func-
tion g (ζ) = [x∗ (ζ) ,λ∗ (ζ) ,µ∗ (ζ)] that yields the optimal point, as well as
the corresponding Lagrange multipliers, in terms of a given perturbation ζ.
Differentiation of such function, with respect to ζ, yields the sensitivity of the
optimal solution. In other words, considering ζ as a parameter rather than a
perturbation, it is possible to obtain a first-order parameter derivative of opti-
mization problems. In fact, if the above conditions hold, the optimal solution
derivative can be numerically evaluated as the solution of a system of linear
equations stemming from the Jacobian of the KKT conditions with respect to
the variables of the optimization problem [45].

Following the same idea, the sensitivity of SDP programs is derived in
[46]. In this case, the conditions under which the implicit function theorem can
be applied are given in terms of the nonsingularity of the Jacobian of optimality
conditions (2-27) at the optimal solution, as well as differentiability of the
problem data (A (ζ) ,b (ζ) , c (ζ)) with respect to parameter ζ. Analogously,
under nonsingularity of the Jacobian of optimality conditions (2-18), the
same development is carried out in [42] to derive the sensitivity of SOCP
optimal solutions. Likewise in the general nonlinear case, the derivative of the
optimal solutions of SDP and SOCP programs can be numerically evaluated
by solving the system of linear equations stemming from the differentiation of
the corresponding optimality conditions. Moreover, since the Jacobian of KKT
conditions at the optimal solution is assumed to be nonsingular, such system
is guaranteed to have a unique solution.

In the following, the numerical evaluation of first-order parameters
derivatives of SOCP and SDP problems is presented.
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First-order parameter derivative for SOCP

The first-order parameter derivative of an SOCP optimal solution may
be obtained via differentiation of the optimality conditions (2-18) with respect
to a given parameter ζ, resulting in

A 0 0
0 AT Id
Z 0 X



x′

y′

z′

 =


b′

c′

0

 , (2-28)

where (.)′ represents the derivative of (.) with respect to the parameter ζ and
the left hand side matrix is the Jacobian of the KKT conditions.

The last row of the left-hand-side matrix in (2-28) may be directly ob-
tained by simply noting that the product of matrices in (2-18) is commutative,
i.e.,

XZe = ZXe =
x1z1 + xT

2:nz2:n

z1x2:n + x1z2:n

 , (2-29)

and can also be expressed as

XZe = Xz = Zx = ZXe. (2-30)

Therefore, it is clear that

∂ (XZe)
∂x

= ∂Zx
∂x

= Z,
∂ (XZe)
∂z

= ∂Xz
∂z

= X. (2-31)

In [42], it is shown that under primal and dual nondegeneracy and
strict complementarity the Jacobian in (2-28) is guaranteed to be nonsingular.
Therefore, if such conditions hold (and the problem data is differentiable
with respect to ζ), then it is possible to show that the first-order parameter
derivative is given as the unique solution of (2-28).

First-order parameter derivative for SDP

Analogously, the first-order parameter derivative of an SDP problem
can be obtained by differentiating the optimality conditions of (2-27) with
respect to a given parameter ζ. To make such equations amenable to direct
differentiation, it is convenient first rewrite the last row in the following
equivalent form:

XZ = 0 ⇐⇒ vec(XZ) = (Id ⊗X) z = 0
= (Z⊗ Id) x = 0

(2-32)

where ⊗ is the Kronecker product [47], x = vec (X), and z = vec (Z). Thus, it
is straightforward to obtain the derivative of (2-27) with respect to ζ, i.e.,

DBD
PUC-Rio - Certificação Digital Nº 1712782/CA



Chapter 2. Conic programming 26


A 0 0
0 AT Id

(Z⊗ Id) 0 (Id ⊗X)



x′

y′

z′

 =


b′

c′

0

 . (2-33)

Similarly to the SOCP case, the matrix in (2-33) is guaranteed to be
nonsingular if both primal-dual nondegeneracy and strict complementarity
hold [46]. In this case, it is possible to show that the parameter derivative
exists and it is given as the unique solution of system (2-33).

2.5
Computational aspects

The development of efficient codes for CP has its starting point in
[48], in which Nesterov & Todd propose an efficient primal-dual interior-
point algorithm for CP problems involving self-scaled cones. Both CSOC and
CPSD are self-scaled cones, hence, not surprisingly, SOCP and SDP were the
first optimization codes to emerge. A step-by-step numerical implementation
of the primal-dual interior-point algorithm for conic quadratic optimization
is introduced in [26], and the implementation and theoretical aspects of
semidefinite optimization are reported in [42]. The efficiency of such primal-
dual interior-point algorithm for CP has been evidenced in [49], in which,
according to Lobo et al., “worst-case theoretical analysis shows that the
number of iterations required to solve a SOCP problem grows at most as the
square root of the number of design variables, while numerical experiments
indicate that the typical number of iterations ranges between 5 and 50, almost
independently of the problem size”. For a detailed comparison of the available
software for the solution of conic programs the reader may refer to [50].

From a theoretical point of view, it is straightforward to observe that
both the nonnegative orthant and the second-order cone are particular cases
of the more general semidefinite cone [51]. On the other hand, from a compu-
tational perspective, it is clear that optimization algorithms for LP and SOCP
provide a greater performance than the codes design to SDP. This indicates
that the underlying structure of the constraints is crucial for efficiency in solv-
ing conic programs. On that account, most of the available codes for CP, e.g,
MOSEK [52], SeDuMi [53], and SDPT3 [54], explicitly include multiple cones
in the problem definition, hence providing the user with the flexibility to ap-
propriately formulate the problem in order to achieve an optimal performance.
In general, such codes define a mixed linear, conic quadratic, and semidefinite
program as
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min clTxl + cqTxq + csTxs

s.t. Alxl + Aqxq +Asxs = b
xl ∈ Rn

+,xq ∈ CSOC ,xs ∈ CPSD
, (2-34)

with linear variables denoted as xl, conic quadratic variables xq and semidefi-
nite variables xs. Since the CP formulation for elastoplastic state-update pro-
cedures leads to mixed conic quadratic and semidefinite programs, such flex-
ibility is of great importance for the efficiency of the codes developed in this
work.
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3
The associative plasticity model

3.1
Material yield criteria

A yield criterion is a hypothesis defining a range, of stress states, in which
a given material behaves elastically. If the load program causes stresses beyond
such range, the material undergoes permanent deformations as yielding takes
place. On that account, it is fair to say that yield criteria strongly dictates
the mechanical behavior of elastoplastic materials and it is a fundamental
component of the mathematical model of plasticity.

According to [55], a yield criterion may be mathematically stated as a
local inclusion of a sublevel set of a given yield function Φ, i.e.,

Σp ∈M , M = {X ∈ S3 | Φ(X, κp) ≤ 0} , (3-1)

where Σp is the Cauchy stress tensor at point p, M is the set of admissible
stress states, and S3 is the set of real 3× 3 symmetric matrices. The function
Φ represents the yield surface (for Φ(X, κp) = 0), and κp is the material
yield limit at point p. It is worth noting that, according to [56], modern
associative plasticity models usually require the yield criteria to be convex.
This assumption ensures that fundamental thermodynamical principles are
satisfied [7]. Therefore, only convex yield criteria are considered in this work.

It is also possible to define yield criteria based on multiple yield surfaces.
Such multisurface criteria are given as the intersection of sublevel sets of two
or more yield functions, i.e.,

M =
n⋂
i=1
Mi =

{
X ∈ S3 | Φi(X, κ(i)

p ) ≤ 0
}
. (3-2)

Another property inherent to material yield criteria regards its differen-
tiability. Although some classical plasticity models required the yield functions
to be smooth, such restriction was latter relaxed by the introduction of the
Koiter’s rule [6] and the concept of subdifferential sets [57] which allowed the
consideration of singular yield criteria into the plasticity model.

Conic representations of yield criteria has been extensively investigated
in limit and shakedown analysis, a central theme in plasticity which aims
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to estimate global collapse load factors of structures. Within the FEM, such
analysis yield convex optimization problems with the following setting

min cTx
s.t. Ax = b

x ∈M
, (3-3)

where M = {x ∈ Rn | gi(x) ≤ 0} are inequalities representing a given failure
criteria. In the case that M is a conic representable set, possibly with the
introduction of some auxiliary variables, it is straightforward to cast problem
(3-3) as a general CP problem (2-1). On that account, rather than solving a
general convex programming problem, the analysis may be tackled by efficient
algorithms, such as the ones described in Section 2.5. In light of this fact, many
works on limit and shakedown analysis have extensively investigated how to
cast practical yield criteria as conic constraints [55].

Although limit and shakedown analysis is beyond the scope of this text,
the same conic representations of yield criteria are employed in the approach
developed in this work. Therefore, for completeness, such casting of yield
criteria as conic constraints is exposed in the following sections.

Positive semidefinite cone representable yield criteria*

Rankine criterion

Rankine criterion, which is also known as the maximum tensile stress cri-
terion [58], is widely employed in the modeling of brittle materials. According
to this criterion, yielding occurs when the maximum principal stress reaches a
given tensile strength κR. The corresponding set of admissible stress states is

MR = {X ∈ S3 | λmax(X) ≤ κR} (3-4)

where λmax is the maximum eigenvalue of X. The Rankine yield surface is
depicted in Figure 3.1.

Tresca criterion

The Tresca criterion is considered as the first yield criterion for metals
and suggests that yield occurs when the maximum shear stress reaches a critical

* This section was extracted from [44].
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Figure 3.1: Rankine yield surface in the space of principal stresses.

value κT . In terms of the principal stresses, the set of admissible stress states
may be given as

MT = {X ∈ S3 | 1/2(σ1(X)− σ3(X)) ≤ κT}, (3-5)

where 1/2(σ1(X)− σ3(X)) = 1/2(λmax(X)− λmin(X)) represents the absolute
value of the maximum shear stress.

Figure 3.2: Tresca yield surface in the space of principal stresses.

Mohr-Coulomb criterion

The Tresca criterion may be considered as a particular case of the more
general Mohr-Coulomb criterion. According to the Mohr-Coulomb theory, the
shear strength τ in a plane is a function of the normal stress σn on the plane.
In its simplest form, this function is given as

τ = c− σn tanφ, (3-6)

where c is the cohesion, and φ is the angle of internal friction.
In terms of the principal stresses, the elastic range of the Mohr-Coulomb

criterion may be written as

MMC = {X ∈ S3|αλmax(X)− βλmin(X) ≤ κMC}, (3-7)
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where α = (1 + sinφ), β = (1− sinφ), and κMC = 2c cosφ.

Figure 3.3: Mohr-Coulomb yield surface in the space of principal stresses.

Clearly, for φ = 0 and κMC = κT , the Mohr-Coulomb criterion reduces
to the Tresca criterion. Additionally, considering α and β as independent
constants, one can retrieve the Rankine criterion by setting α = 1, β = 0,
and κMC = κR. Therefore, from a theoretical point of view, it is sufficient to
cast the Mohr-Coulomb criterion as a semidefinite conic constraint.

Casting yield criteria as semidefinite constraints

The key point here is to observe that constraints regarding the maximum
and minimum eigenvalues of a given symmetric matrix may be rewritten as
semidefinite conic constraints. First, given X ∈ Rn×n and t ∈ R, we have the
following well-known identity:

λk(tId −X) = t− λn+1−k(X) (k = 1, .., n), (3-8)

where λk(X) is the k-th largest eigenvalue of X ∈ Rn×n. It follows that

λmax(tId −X) = t− λmin(X). (3-9)

Therefore, it is clear that

λmax(X) ≤ t ⇐⇒ tId −X � 0. (3-10)

The case of the minimum eigenvalue constraints is directly derived from
(3-10). We observe that

−λmin(X) = λmax(−X), (3-11)

therefore,
−λmin(X) ≤ t ⇐⇒ tId + X � 0. (3-12)

Finally, using an auxiliary variable y ∈ R, the inequality in (3-7) may be
split into the following two inequalities [55]:

DBD
PUC-Rio - Certificação Digital Nº 1712782/CA



Chapter 3. The associative plasticity model 32

 αλmax(X) ≤ (κMC − y),
−βλmin(X) ≤ y.

(3-13)

Therefore, the elastic range of the Mohr-Coulomb criterion may be
written as an inclusion of the following semidefinite cone:

MMC =

W ∈ S6

∣∣∣∣∣∣W =
Y 0

0 Z

 � 0

 . (3-14)

where Y = −αX + (κMC − y)Id,
Z = yId + βX.

(3-15)

Second-order cone representable yield criteria*

von Mises criterion

The von Mises criterion is extensively employed in the modeling of
metals and other ductile materials and suggests that yielding begins when
the distortion strain energy reaches a critical value. In terms of the second
deviatoric stress tensor invariant J2(X), the von Mises yield surface is given
as √

J2(X) = κVM , (3-16)
where κVM is the yield stress in pure shear.

Therefore, the set of admissible stress states is expressed as

MVM = {X ∈ S3|
√
J2(X) ≤ κVM}. (3-17)

Figure 3.4: von Mises yield surface in the space of principal stresses.

* This section was extracted from [44].
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Drucker-Prager criterion

The Drucker-Prager criterion is a generalization of the von Mises criterion
in which a hydrostatic pressure sensitivity term is introduced. This sensitivity
is enforced by adding a term in (3-16), which is related to the first stress tensor
invariant I1(X), i.e.,

1
3γI1(X) +

√
J2(X) = κDP , (3-18)

where γ and κDP are material parameters, that can be obtained from experi-
mental data, and I1(X) = tr(X) is related to the hydrostatic pressure m(X)
as I1(X) = 3m(X). Clearly, for γ = 0, the von Mises criterion is retrieved.

Figure 3.5: Drucker-Prager yield surface in the space of principal stresses.

Following the reasoning used in the previous section, it is sufficient
to show how to cast the Drucker-Prager criterion into a second-order conic
constraint. Although such criteria may also be represented by the more general
case of semidefinite conic constraints, SOCP problems are easier to solve than
SDP problems. Hence, second order conic representations should be considered
whenever possible.

Casting yielding criteria as conic quadratic constraints

Collecting the six independent components of the stress tensor Σ into a
vector σ yields

σ =
[
Σ11 Σ22 Σ33 Σ12 Σ13 Σ23

]T
, (3-19)

The second deviatoric stress tensor invariant may be written in the following
matrix form:

J2(Σ) = σTPσ, (3-20)
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where

P = 1
6



2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 6 0 0
0 0 0 0 6 0
0 0 0 0 0 6


. (3-21)

Given that P is a symmetric positive semidefinite matrix it may be
decomposed as

P = VTDV, (3-22)
where V is a matrix that collects the eigenvectors of P in a column-wise
manner, and D = diag(λ1(P), ..., λ6(P)) with λk(P) ≥ 0 (k = 1, .., 6).
Therefore, P may be further decomposed as

L = D
1
2 V =⇒ P = LTL. (3-23)

Such decomposition allows the square root of the second deviatoric stress
tensor invariant to be expressed as the following quadratic norm:√

J2(Σ) =
√
σTPσ =

√
σTLTLσ = ‖Lσ‖. (3-24)

For the hydrostatic pressure term, the following vectorial form is suffi-
cient:

m(Σ) = σTb, b =
[
1/3 1/3 1/3 0 0 0

]T
. (3-25)

By collecting these results, the elastic range for the Drucker-Prager
criterion may be rewritten as an inclusion of the following second-order cone:

MDP =
{

(t, s) ∈ R× R6 | t ≥ ‖s‖, t ≥ 0
}

(3-26)

where
t = κDP − γσTb,
s = Lσ.

(3-27)

3.2
Flow rules

Once the conditions upon which yielding may occur have been estab-
lished, it still remains to define the mechanical behavior of the material when
it undergoes permanent deformations. Specifically, a description of how plastic
deformations evolve during the load program is required. Within plasticity,
such evolution law is usually termed plastic flow, or flow rule, and it describes
the rate of change of plastic strains in terms of the current stresses Σ, i.e.,

ε̇p = γ̇N(Σ) (3-28)
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where εp is the plastic strain tensor, γ̇ is the so-called plastic multiplier, and
N(Σ) is a function which defines the direction of evolution of plastic strains
in terms of the stresses.

Another key component of a plastic model regards the changes to the
yield surface during plastic deformation, phenomenon known as hardening.
Such process is inherent to many materials but it was first observed in uniaxial
tension tests of metal bars. In such experiment, it was detected that the
tensile yield stress of the metal tended to grow as yielding took place. In
order to describe the behavior of hardening, plastic models usually postulate
an evolution law that gives the rate of change of hardening variables α as

α̇ = −γ̇H(Σ,Θ) (3-29)

where α are the hardening variables, γ̇ is the same plastic multiplier as in
(3-28), and H(Σ,Θ) is the function giving the direction of change of the
hardening variables in terms of both the current stresses and hardening forces
Θ. It is worth noting that in the presence of hardening, N(Σ,Θ) also becomes
dependent of the hardening forces. The effects of hardening on the yield
criterion consists in changes in size, shape, and orientation. Mathematically,
such effects are described by incorporating the hardening forces into the yield
criterion definition, i.e.,

M = {(Σ ,Θ) ∈ S3 × Rnh×nh | Φ(Σ,Θ, κp) ≤ 0}, (3-30)

where nh denotes the number of hardening variables.
The model is called associative when the flow directions N and H are

normal to the yield surface*, an assumption which is adopted in this work.
In this case, an alternative and interesting manner to introduce such rate
relations is by means of the PMPD. Instead of postulating the evolution laws,
the formulation based on the PMPD follows from important results derived
from the theory of MP. A rigorous mathematical analysis of the PMPD is
carried out in [59]. By employing tools from convex analysis [60], Han &
Reddy establish the elastoplastic equations for the general case of singular yield
surfaces. Moreover, the PMPD allows to formulate multisurface plasticity in a
straightforward manner. In fact, Koiter’s rule [6] can be shown to be a direct
consequence of the PMPD.

Based on the PMPD, the following section introduces the associative
plasticity model for the general case of singular and multisurface criteria.

* w.r.t. the stresses and hardening forces.
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3.3
Principle of maximum plastic dissipation

Let
A = {(Σ,Θ)|fi(Σ,Θ) ≤ 0, i = 1, . . . , n} (3-31)

be the set of all admissible pairs of stress Σ and hardening force Θ for a given
yield criterion defined by the intersection of sublevel sets of fi. The PMPD
states that, for a given plastic strain rate ε̇p and internal hardening variable
rate α̇, the actual state {Σ,Θ} ∈ A is, among all the admissible pairs, the one
for which the plastic dissipation

Dp (Σ,Θ, ε̇p, α̇) = Σ : ε̇p −Θ : α̇ (3-32)

attains its maximum value, i.e.,

Dp(Σ,Θ, ε̇p, α̇) ≥ Dp(Σ∗,Θ∗, ε̇p, α̇) ∀ (Σ∗,Θ∗) ∈ A. (3-33)

Accordingly, the PMPD postulates that the actual state {Σ,Θ} ∈ A is
the solution pair of the following optimization problem.

max
Σ,Θ

Dp(Σ,Θ, ε̇p, α̇)

s.t. (Σ,Θ) ∈ A
. (3-34)

The Lagrangian associated with (3-34) is given by

L (Σ,Θ, ε̇p, α̇, γ̇) = −Σ : ε̇p + Θ : α̇+
n∑
i=1

γ̇ifi(Σ,Θ), (3-35)

where γ̇i is a Lagrangian multiplier associated with constraint fi(Σ,Θ).
The corresponding KKT optimality conditions of such convex optimiza-

tion problem [60] are precisely the associative plasticity constitutive equations,
i.e.,
a. Associative flow rule

ε̇p =
n∑
i=1

γ̇iNi, Ni ∈ ∂Σfi (3-36)

b. Associative hardening law

α̇ =
n∑
i=1
−γ̇iHi, Hi ∈ ∂Θfi (3-37)

c. Loading/unloading complementary conditions

γ̇i ≥ 0, fi(Σ,Θ) ≤ 0, γ̇ifi(Σ,Θ) = 0 (3-38)

where ∂Σfi, ∂Θfi denote the subdifferential [60] of the potentially nonsmooth
yield function fi with respect to Σ and Θ, respectively. If the pair (Σ,Θ)
corresponds to a smooth portion of fi, then Ni and Hi may be replaced by
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Ni = ∂fi(Σ,Θ)
∂Σ

, Hi = ∂fi(Σ,Θ)
∂Θ

. (3-39)

The constitutive model for associative plasticity considered in this work
is completely defined by taking into account the following assumptions:
d. Additive decomposition of total strains

ε = εe + εp, (3-40)
where ε is the total strain tensor and εe is the elastic component,
e. Isotropic and linear elastic behavior

Σ = C : εe, (3-41)

where C is the fourth-order stiffness tensor, and
f. Linear hardening law

Θ = D : α. (3-42)
where D is the generalized plastic modulus.

Once the elastoplastic model is defined, the evolution of plastic strains
and hardening variables is mathematically expressed by the following IVP.*

Problem 1 (Elastoplastic constitutive IVP) Consider p as a point of a
body B that obeys the constitutive model described in equations (3-36 – 3-
42). The evolution of elastic strains εe(t), plastic strains εp(t) and hardening
variables α(t) at p ∈ B , between an initial time t0 and a subsequent instant
T , are precisely the functions that solve the constrained system of differential-
algebraic equations (DAE)

ε̇e(t) = ε̇(t)− γ̇(t)N(t)
α̇(t) = −γ̇(t)H(t)
s.t. γ̇(t)f(Σ(t),Θ(t)) = 0

f(Σ(t),Θ(t)) ≤ 0
γ̇(t) ≥ 0

(3-43)

for a given strain history ε(t), t ∈ [t0, T ], and initial conditions εe(t0), εp(t0),
and α(t0).

3.4
Hardening models

The mathematical description of the hardening phenomenon relies on the
selection of a suitable set of internal hardening variables and how those affect
the shape of the yield surface. Such variables are usually chosen based on the

* From now on, for simplicity, the notation for the multisurface case is dropped. However,
the next developments also holds for the multisurface case.
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phenomenological aspects of the elastoplastic behavior of the material to be
modeled. Most commonly, residual self-equilibrated stress and/or accumulated
plastic strains are chosen as the hardening variables. In regard to the effect
which these variables affect the shape of the yield surface, two distinct
models are usually considered; the isotropic hardening, which defines the
expansion/shrinkage of the yield surface uniformly in all directions, and the
kinematic hardening, which denotes rigid body translations of the surface in
space.

Isotropic hardening

In this work, the accumulated plastic strain

ε̄p =
∫ t

0
γ̇ dt (3-44)

is chosen as the internal variable for modeling the isotropic hardening behavior
of elastoplastic materials. Accordingly, a scalar thermodynamical force θ(ε̄p) is
adopted and the hardening curve is postulated as

κ(ε̄p) = κ0 + θ(ε̄p). (3-45)

Thus, the isotropic expansion/shrinkage is defined by changes in the yield
stress limit in terms of the scalar hardening variable ε̄p. Moreover, it is assumed
that the hardening law is linear, i.e., the relation between hardening forces θ(ε̄p)
and accumulated plastic strains is given as

θ(ε̄p) = hε̄p (3-46)

hence the linear hardening curve is expressed as

κ(ε̄p) = κ0 + hε̄p. (3-47)

In terms of the model outlined in Section 3.3, the isotropic hardening is
modeled as

α := {ε̄p}, Θ := {θ}, D := {h} (3-48)
and a general yield criterion is restated as

M = {(Σ , θ) ∈ S3 × R | Φ(Σ, κ(θ)) ≤ 0}. (3-49)

In view of the associativity assumption adopted in this work, the rate
equation for the internal variables is simply given as

˙̄εp = −γ̇ ∂Φ
∂θ

= −γ̇ ∂Φ
∂κ

∂κ

∂θ

(3-50)
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which clearly leads to
˙̄εp = γ̇. (3-51)

It is worth noting that such rate equation is in complete accordance with the
definition of the accumulated plastic strain in Eq. (3-44). Also, the redefinition
of the yield criterion due to isotropic hardening comprises the introduction
of a linear equation in terms of the internal variable. Therefore, the conic
representation described in Sections 3.1 and 3.1 can be easily extended to the
isotropic hardening case by merely introducing a linear constraint with an
additional variable.

Kinematic hardening

The so-called kinematic hardening is responsible for describing transla-
tions of the yield surface in stress space. This phenomenon, also known as
the Bauschinger effect, is usually observed in uniaxial experiments which show
that some materials, after being loaded beyond its elastic stress limit, tend to
have its yielding limit decreased in compression whereas increased in tension.
This process can be mathematically modeled by replacing the actual stresses
Σ by the so-called relative stress

η = Σ− β, (3-52)

where β is known as the back-stress tensor which denotes the thermodynam-
ical forces of the kinematic hardening model. Accordingly, the tensor-valued
hardening variable X is related to self-equilibrated residual stresses that may
affect the yielding resistance in certain directions.

As in the isotropic hardening case, a linear relation between the internal
variables and hardening forces is considered, i.e.,

β = K : X, (3-53)

where K is the fourth-order tensor known as linear kinematic hardening
modulus.

According to the model described in Section 3, the kinematic hardening
is thus modeled as

α := {X}, Θ := {β}, D := {K} (3-54)

and the yield criterion is restated as

M = {(Σ ,β) ∈ S3 × R3×3 | Φ(η, κ) ≤ 0, η = Σ− β}. (3-55)

It is thus clear that the description of yield criteria under kinematic
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hardening accounts for a simple linear constraints which replaces the actual
stresses with the relative measure η. Therefore, likewise in the isotropic
hardening case, it is straightforward to rewrite the conic representation of
Sections 3.1 and 3.1 for the kinematic hardening case.

Under associativity, the evolution law for the hardening variables follows
from

Ẋ = −γ̇ ∂Φ
∂β

= −γ̇ ∂Φ
∂η

: ∂η
∂β

(3-56)

which is clearly equivalent to
Ẋ = γ̇N (3-57)

with N defined as in Section 3.2.

Mixed kinematic-isotropic hardening

It is also possible to consider the general case ofmixed kinematic-isotropic
hardening. In such case the yield surface is allowed both to scale and translate
in space. Such hardening model may be directly modeled by simply stacking the
isotropic and kinematic variables into enlarged diagonal matrices. Therefore,
the variables of Section 3.3 specialize as

α :=
ε̄p 0

0 X

 , Θ :=
θ 0

0 β

 , D :=
h 0

0 K

 . (3-58)

3.5
Numerical integration of elastoplastic constitutive equations*

Exact solution to DAEs can only be obtained for extremely simple
problems. In the case of elastoplastic constitutive IVPs, analytical solutions
are only available for very simple strain histories involving elementary yield
criteria. Thus, to solve complex models, numerical methods must be adopted.
Although many integration schemes have been reported [61, 62], for simplicity,
the fully implicit Euler scheme is adopted. Hence, considering a time interval
[tn, tn+1] with respect to a generic step of the Euler scheme, the discretized
version of the elastoplastic constitutive IVP (3-43) is given as

* This section was extracted from [44].
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

εen+1 = εen + ∆ε−∆γNn+1

αn+1 = αn −∆γHn+1

s.t. ∆γf(Σn+1,Θn+1) = 0
f(Σn+1,Θn+1) ≤ 0
∆γ ≥ 0

, (3-59)

where ∆(·) = (·)n+1 − (·)n.
After the time-discretization step, a predictor-corrector scheme [7] is

typically employed. In such framework, the solution for the constrained system
of equations in (3-59) is solved via a two-step algorithm. First, in the elastic
trial step, the variation of the total strains is assumed to be purely elastic.
Accordingly, the potential (trial) solution is given as

Σtrial
n+1 = C : (εen + ∆ε) = C : εe trial

n+1 ,

Θtrial
n+1 = Θn,

∆γ = 0.
(3-60)

If this solution fulfills
f(Σtrial

n+1,Θtrial
n+1) ≤ 0, (3-61)

the variables are simply updated as

(·)n+1 = (·)trial
n+1. (3-62)

Conversely, if condition (3-61) is not satisfied, the algorithm proceeds with
the plastic corrector step, usually performed by means of RMAs. In this case,
it is assumed that plastic deformation will occur; consequently, the following
strictly positive condition must be satisfied:

∆γ > 0. (3-63)

By virtue of this requirement, the problem in (3-59) yields the following system
of nonlinear equations

εen+1 = εetrial
n+1 −∆γNn+1

αn+1 = αtrial
n+1 −∆γHn+1

f(Σn+1,Θn+1) = 0
, (3-64)

subjected to the strictly positive condition (3-63). In practice, the system of
equations is first solved regardless of this constraint. Then, if the solution
complies with condition (3-63), the result is accepted.

Alternatively, the solution to problem (3-59) may be sought as the
optimum pair (Σ,Θ) for the following convex optimization problem

min
Σ,Θ

F(Σ,Θ)

s.t. f(Σ,Θ) ≤ 0
(3-65)
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where f(Σ,Θ) is a convex yield criterion function,

F(Σ,Θ) = 1
2(Σtrial

n+1 −Σ) : C−1 : (Σtrial
n+1 −Σ)

+1
2(Θtrial

n+1 −Θ) : D−1 : (Θtrial
n+1 −Θ).

(3-66)

The MP problem in (3-65) may also be interpreted as the discrete coun-
terpart of the PMPD stated in (3-34). Additionally, as noted in [8], it allows
for an intuitive geometric interpretation in the sense that the solution pair
(Σ∗,Θ∗) is the closest point projection of the trial state (Σtrial

n+1,Θtrial
n+1) onto the

yield surface, considering the inner products induced by the inverse operators
of both the elastic constitutive tensor C and the generalized hardening modulus
D, i.e.

(Σ∗,Θ∗) = ARG
{

min
(Σ,Θ)∈A

1
2
∥∥∥Σtrial

n+1 −Σ
∥∥∥2

C−1
+ 1

2
∥∥∥Θtrial

n+1 −Θ
∥∥∥2

D−1

}
. (3-67)

The equivalence between problems (3-59) and (3-65) may be established
in terms of the KKT conditions for problem (3-65). Considering the Lagrangian
function of this problem

L(Σ,Θ,∆γ) = F(Σ,Θ) + ∆γf(Σ,Θ), (3-68)

it follows that the KKT conditions [60] may be expressed as

εen+1 = εen + ∆ε−∆γNn+1

αn+1 = αn −∆γHn+1

∆γf(Σn+1,Θn+1) = 0
f(Σn+1,Θn+1) ≤ 0
∆γ ≥ 0

. (3-69)

Clearly, these are identical to the equations of problem (3-59).
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4
The finite element method in nonlinear solid mechanics

4.1
The incremental initial value problem

Consider a domain Ω ⊂ R3 with boundary ∂Ω occupied by a body
B subject to tractions forces t at ∂Ω and body forces b across Ω. Under
infinitesimal deformations, the principle of virtual work yields the following
weak statement of equilibrium at a given time t∫

Ω
ρü(t)·ηdv+

∫
Ω
σ(t) : ∇ηdv−

∫
Ω

b(t)·ηdv−
∫
∂Ω

t(t)·ηds = 0 ∀η ∈ V . (4-1)

where ρ is the mass density distribution, u is the displacement field, V is the
space of virtual displacements, i.e., the space of sufficiently regular functions,
and η is an arbitrary virtual displacement field at time t.

Since this work is restricted to quasi-static problems, inertia effects
are ignored and the first integral term in (4-1) is neglected. Therefore, the
equilibrium is stated as∫

Ω
σ(t) : ∇sη dv −

∫
Ω

b(t) · η dv −
∫
∂Ω

t(t) · η ds = 0 ∀η ∈ V . (4-2)

where ∇s(·) = 1
2(∇(·) +∇T(·)).

Considering an interval in time t ∈ [t0, T ], the problem, as depicted in
Figure 4.1, is completely defined by prescribing a history of body forces on Ω

b(t) = b̄(t), t ∈ [t0, T ], (4-3)

natural boundary conditions on ∂Ωt

t(t) = t̄(t), t ∈ [t0, T ], (4-4)

and essential boundary conditions on ∂Ωu

u(t) = ū(t), t ∈ [t0, T ], (4-5)

such that ∂Ωt ∪ ∂Ωu = ∂Ω.
In light of these definitions, the infinitesimal quasi-static initial BVP

may be stated as [7]:
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Figure 4.1: Schematic representation of a general initial BVP.

Problem 2 (The infinitesimal quasi-static initial BVP) Find a kine-
matically admissible displacement field u ∈ K such that, for t ∈ [t0, T ],∫

Ω
σ(t) : ∇sη dv −

∫
Ω

b(t) · η dv −
∫
∂Ωt

t(t) · η ds = 0 ∀η ∈ V . (4-6)

with
V = {η : Ω 7→ U | η = 0 on ∂Ωu} . (4-7)

and K the space of all kinematically admissible displacements, i.e.,

K = {u : Ω× R 7→ U | u(x, t) = ū(x, t), x ∈ ∂Ωu, t ∈ [t0, T ]} . (4-8)

Considering the model described in Chapter 3, it is clear that Eq. (4-6)
becomes nonlinear in u(t), owing to the intrinsic non-proportional relation
between stresses and strains. Moreover, due to the lack of analytical solutions
for Problem 1, such relation is determined only in a time-discrete sense rather
than in a continuum form. In such discrete sense, considering an arbitrary time
increment [tn, tn+1], the elastoplastic behavior is fully established by defining
the following incremental functions:

σn+1 = σ̂(αn, εn+1) = σ̂(αtrial
n+1, ε

trial
n+1)

αn+1 = α̂(αn, εn+1) = α̂(αtrial
n+1, ε

trial
n+1)

(4-9)

which gives the updated values of stresses σn+1 and hardening variables
αn+1 in terms of the trial state (αtrial

n+1, ε
trial
n+1). For instance, such incremental

functions may be defined as in Eq. (3-67), i.e., as the optimal point of a convex
optimization problem.

Owing to the time-discrete nature of the underlying constitutive model,
it is useful to define the following incremental version of Problem 2 [7]:

Problem 3 (The incremental infinitesimal quasi-static initial BVP )
Given the internal variables αn at time tn, find a displacement field
un+1 ∈ Kn+1 such that∫

Ω
σ̂(αn, εn+1) : ∇sη dv−

∫
Ω

bn+1 ·η dv−
∫
∂Ωt

tn+1 ·η ds = 0 ∀η ∈ V . (4-10)
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where bn+1 and tn+1 are the prescribed body forces and surface tractions at time
tn+1, and the set of kinematically admissible displacements Kn+1 is rewritten
as

Kn+1 = {u : Ω 7→ U | u(x) = ūn+1(x), x ∈ ∂Ωu} . (4-11)

4.2
Finite element discretization

The starting point for the solution of BVPs via the FEM relies on
an approximation statement of the principle of virtual work in which the
domain of the body and related fields are discretized in a finite-dimensional
space generated by the finite element interpolation functions. The introduction
of such approximations reduces Problem 3 to a set of algebraic nonlinear
equations which (approximately) express the equilibrium at time tn+1.

Assume, without loss of generality, that both the body B and the
displacement field have dimension ndim = 3. Let the domain Ω ⊂ R3 be
discretized with a mesh h consisting of nelem elements, as depicted in Figure
4.2, such that the approximated domain is given as

Ωh =
nelem⋃
e=1

Ω(e) (4-12)

where Ω(e) is the domain of the e-th finite element.

Figure 4.2: FEM discretization mesh of domain Ω.

Within each finite element e, the displacement field is approximated by
interpolating the values at the element’s nodes, i.e.,

u(x)h =
nnodes∑
i=1

N
(e)
i (x)ui on Ω(e), (4-13)

where nnodes is number of nodes of finite element e, N (e)
i is the local shape

function associated with node i, and ui is displacement value at node i. An
example of a linear shape function is depicted in Figure 4.3.

Based on such approximation, it is straightforward to rewrite such
interpolation in a global sense, as depicted in Figure 4.4, i.e.,
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Figure 4.3: A linear shape function.

Figure 4.4: Global interpolation.

u(x)h =
npoints∑
i=1

N g
i (x)ui on Ωh, (4-14)

where npoints is the number of points of mesh h and N g
i is the global shape

function associated with point i.
The discretized version of the virtual work is accomplished by replacing

the functional sets K and V by its discrete counterparts, i.e.,

Khn+1 =
{

uh(x) =
npoints∑
i=1

N g
i (x)ui | ui = ūn+1(xi) ∀xi ∈ ∂Ωu

}
, (4-15)

Vh =
{
ηh =

npoints∑
i=1

N g
i (η)ηi | ηi = 0 ∀xi ∈ ∂Ωu

}
. (4-16)

In order to rewrite the variational continuum statement in (4-10) as set of
algebraic equations, it is convenient to introduce the following matrix notation.

The global vector of nodal displacements is written as

uT =
[
u1
x, u

1
y, u

1
z, . . . , u

npoints
x , unpoints

y , unpoints
z

]
. (4-17)

Accordingly, the global vector of nodal virtual displacements is expressed
as

ηT =
[
η1
x, η

1
y , η

1
z , . . . , η

npoints
x , ηnpoints

y , ηnpoints
z

]
. (4-18)

The global interpolation operator is defined as

Ng(x) =
[
diag[N g

1 (x)] diag[N g
2 (x)] . . . diag[N g

npoints
(x)]

]
, (4-19)
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where diag[N g
i (x)] corresponds to the ndim×ndim diagonal matrix with nonzero

components equal to N g
i (x). In the three-dimensional case (ndim = 3) it is

explicitly given as 
N g
i (x) 0 0
0 N g

i (x) 0
0 0 N g

i (x)

 . (4-20)

Consider also the following vectorial notation for the stresses and engi-
neering strains

σ =
[
σ11 σ22 σ33 σ12 σ23 σ13

]
, (4-21)

ε =
[
ε11 ε22 ε33 2ε12 2ε23 2ε13

]
. (4-22)

Once such vectorial notation is imposed, it is useful to define the global
discrete symmetric gradient operator, which, in the three-dimensional case, is
expressed as

Bg =



N g
1,1 0 0 N g

2,1 0 0 . . . N g
npoints,1 0 0

0 N g
1,2 0 0 N g

2,2 0 . . . 0 N g
npoints,2 0

0 0 N g
1,3 0 0 N g

1,3 . . . 0 0 N g
npoints,3

N g
1,2 N g

1,1 0 N g
2,2 N g

2,1 0 . . . N g
npoints,2 N g

npoints,1 0
0 N g

1,3 N g
1,2 0 N g

2,3 N g
2,2 . . . 0 N g

npoints,3 N g
npoints,2

N g
1,3 0 N g

1,1 N g
2,3 0 N g

2,1 . . . N g
npoints,3 0 N g

npoints,1


.

where (·), i denotes the derivative of (·) with respect to the i-th coordinate.
Considering an arbitrary interpolated field v(x) = Ng(x)v, such operator

defines the following linear transformation

Bg(x)v =



∇s(v(x))11

∇s(v(x))22

∇s(v(x))33

2∇s(v(x))12

2∇s(v(x))23

2∇s(v(x))13


. (4-23)

and in the case of the displacement field, such operator defines the strain-
displacement relation, i.e.,

ε = Bgu, (4-24)
with ε denoting the engineering strains according to Eq. (4-22).

In light of such matrix notation, the finite element approximation of the
virtual work statement is expressed as∫

Ωh
σ ·Bgη dv −

∫
Ωh

b ·Ngη dv −
∫
∂Ωh

t

t ·Ngη ds = 0 ∀η ∈ Vh. (4-25)

which can be conveniently rewritten as
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{∫
Ωh

(Bg)Tσ dv −
∫

Ωh
(Ng)Tb dv −

∫
∂Ωh

t

(Ng)Tt ds
}
η = 0 ∀η ∈ Vh. (4-26)

Since such equality must hold for any vector η it follows that the term
in brackets must vanish, thus∫

Ωh
(Bg)Tσ dv −

∫
Ωh

(Ng)Tb dv −
∫
∂Ωh

t

(Ng)Tt ds = 0. (4-27)

If we denote the internal and external force vectors as

f ext =
∫

Ωh
(Ng)Tb dv +

∫
∂Ωh

t

(Ng)Tt ds, (4-28)

f int =
∫

Ωh
(Bg)Tσ dv, (4-29)

then the system of algebraic equations defining the equilibrium is given as

r = f int − f ext = 0 (4-30)

where r denotes the residuum forces.
If we apply the same discretization to Problem 3 we arrive at the following

nonlinear equilibrium equations

r(un+1) = f int(un+1)− f ext
n+1 = 0 (4-31)

with
f int(un+1) =

∫
Ωh

(Bg)Tσ̂(αn, εn+1) dv, (4-32)
and

f ext
n+1 =

∫
Ωh

(Ng)Tbn+1 dv +
∫
∂Ωh

t

(Ng)Ttn+1 ds. (4-33)

4.3
The nonlinear solution scheme

Although several numerical schemes are available in the literature of
nonlinear FEM, for the sake of simplicity, this works adopts the well-known
N-R scheme for the numerical solution of the nonlinear equilibrium equations.
Owing to its asymptotic and quadratic rates of convergence, this numerical
method is particularly suitable for the present problem.

The N-R method relies on taking steps towards the solution by solving the
linearized versions of the corresponding nonlinear equations. The linearization
of Eq. (4-31) may be derived either by discretizing a linearized version of the
principle of virtual work [7] or by explicit differentiation of the discretized
virtual work statement. The latter alternative yields
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∂r(un+1)
∂un+1

= ∂f int(un+1)
∂un+1

=
∫

Ωh
(Bg)T∂σ̂(αn, εn+1)

∂un+1
dv

=
∫

Ωh
(Bg)T∂σ̂(αn, εn+1)

∂εn+1

∂εn+1

∂un+1
dv

=
∫

Ωh
(Bg)TCepBg dv

(4-34)

where
Cep = ∂σ̂(αn, εn+1)

∂εn+1
(4-35)

is known as the consistent elastoplastic tangent operator (CETO) and

KT =
∫

Ωh
(Bg)TCepBg dv (4-36)

is called the consistent elastoplastic tangent matrix.
The first order approximation of Eq. (4-31), in a given point u(k)

n+1, is
given as

r(un+1) ≈ r(u(k)
n+1) + KT |u(k)

n+1
(un+1 − u(k)

n+1)

= r(u(k)
n+1) + K(k)

T δu(k+1)
(4-37)

where
K(k)
T = KT |u(k)

n+1
, δu(k+1) = (un+1 − u(k)

n+1). (4-38)
Each iteration N-R consists in finding the root of such linearized equation

and updating the current guess , i.e.,

δu(k+1) = −(K(k)
T )−1r(u(k)

n+1),
u(k+1)
n+1 = u(k) + δu(k+1).

(4-39)

until a given convergence criterion is satisfied. In particular, the convergence
criterion adopted in this work is given as∥∥∥r(k)

n+1

∥∥∥
∞

‖f extn+1‖∞
≤ εtol, (4-40)

where r(k)
n+1 represents the residuum of the equilibrium balance at iteration k,

fext represents the external forces of at time tn+1, and εtol is a given numerical
tolerance.

4.4
Computational implementation

The FEM code for the solution of nonlinear solid mechanics BVPs
developed in this work was implemented in MATLAB. The code is able to
perform material nonlinear analyses of 2D/3D continuum problems under
the hypothesis of small displacements and infinitesimal deformations. The
computational implementation of a given material constitutive behavior is
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carried out by providing the incremental constitutive functions of Eq. (4-9)
as a MATLAB function handle. This allows the user to model a wide range of
materials using any kind of integration procedure or any desired RMA strategy.
An overview of the program structure and detailed instructions of how to use
it are given in the following.

Program structure

The overall program is divided in three parts:

– Input: which comprises the finite element mesh, the materials’ constitu-
tive functions and the analysis parameters for the N-R scheme.

– Main procedure: which consists in the actual nonlinear FEM by means
of the N-R scheme.

– Output: which account for the resulting data representing the solution
of the problem, i.e., nodal displacements, elastic strains, plastic strains,
reactions, etc.

and is comprised of the following MATLAB scripts:
/fem

nlfem_disp_ctrl.m
nlfem_load_ctrl.m
/elems

/Q4
Q4.m
Q4BMatrix.m
Q4ElementStiffness.m
Q4Stress.m
Q4BMatrixAxisymmetric.m
Q4ElementStiffnessAxisymmetric.m
Q4StressAxisymmetric.m

/Q8
Q8.m
Q8BMatrix.m
Q8ElementStiffness.m
Q8Stress.m
Q8BMatrixAxisymmetric.m
Q8ElementStiffnessAxisymmetric.m
Q8StressAxisymmetric.m
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All the scripts in the /elems folder are related to the computational
implementation of specific finite elements. The Q4.m and Q8.m scripts consists
of utility functions which emulates the construction of four-noded and eight-
noded quadrilateral elements, respectively. The header of such functions are
given as

function [Q8_class] = Q8(analysis_type)

function [Q4_class] = Q4(analysis_type)

% Analysis type

% 1 −> Plane Stress

% 2 −> Plane Strain

% 3 −> Axisymmetric

The output arguments Q4_class and Q8_class are MATLAB structs
with the following fields:

BMatrix: [function_handle]

stiffnessMatrix: [function_handle]

linearStiffnessMatrix: [function_handle]

stressFunction: [function_handle]

elem_data: [ngptsx1 struct]

nodes: [nx1 integer]

The nodes parameter is a n × 1 array of integers which stores the
identities of the element’s nodes representing the connectivity of the mesh
and elem_data is a ngpts× 1 array of structs with fields:

sigma: [4x1 double]

ep: [4x1 double]

alpha: [double]

where sigma, ep, alpha represents the stresses, plastic strains and hardening
variable on a given integration point.

The most important aspect of the element implementation consists in
the local stiffness matrix assembly function which is also responsible both for
evaluating the internal forces due to the stresses and updating the state of
the elem_data field, at each integration point. For instance, if one builds a Q4
element subjected to plane stress, the stiffnessMatrix function handle field
is set with the routine detailed in Listing 4.1.

The crucial part of this code consists in the evaluation of both the
updated state (elem_data) and the CETO (Cep) at each integration point.
This procedure takes place at the piece of code in red, which involves the use
of the function handle stored in the elem_prop.constitutive_model field.
Such function handle is provided as an input by the user and is responsible for
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function [k,f,elem_data] = Q4ElementStiffness(x, y,...
elem_data,...
elem_prop,...
du_elem)

t = elem_prop.t;

k=zeros(8,8);
f=zeros(8,1);

PG = [−1/sqrt(3) 1/sqrt(3)];

BMatrix = @(csi,eta) Q4BMatrix(csi,eta,x,y);

index = 0;

for i=1:2
csi=PG(1,i);
for j=1:2
index = index + 1;
eta=PG(1,j);
[B,J] = BMatrix(csi,eta);
dlt_strain = B*du_elem;
[elem_data(index),Cep] = ...

elem_prop.constitutive_model(dlt_strain,...
elem_data(index),...
elem_prop);

k = k + B'*Cep*B*det(J)*t;
f = f + B'*elem_data(index).sigma(1:3)*det(J)*t;
end

end
return

Listing 4.1: Q4ElementStiffness function

modeling the elastoplastic behavior of the material.
An outline of each division of the program structure is briefly presented

in the following.

Input

The starting point for using the code are the scripts nlfem_disp_ctrl.m
and nlfem_load_ctrl.m, which employ displacement and load control for the
nonlinear FEM incremental procedure, respectively. The header of these scripts
are given in Listing 4.2.
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function [output] = nlfem_disp_ctrl(coords , ...
connect , ...
dbc , ...
fbc , ...
elems_prop, ...
properties, ...
params)

function [output] = nlfem_load_ctrl(coords , ...
connect , ...
dbc , ...
fbc , ...
elems_prop, ...
properties, ...
params)

Listing 4.2: NLFEM headers

A detailed description of the input arguments are given in the following:
• coords - Mesh coordinates

% coords: [numNodes x 2 double] −> Array of 2D coordinates of

% mesh nodes

% : (x, y)

% : x −> x coordinate value

% : y −> y coordinate value

• connect - Mesh connectivity

% connect: [numElems x 1 struct] −> Array of finite element structs

% : See Q4.m and Q8.m files for example of construction of

% such structs

• dbc - Displacement boundary conditions

% dbc: [numDBC x 5 double] −> Array of displacement boundary

% conditions

% : (node, ux, uy, is_prescribed_x, is_prescribed_y)

% : node −> node id

% : ux −> prescribed x displacement value

% : uy −> prescribed y displacement value

% : is_prescribed_x −> 1 if x displacement is prescribed,

% 0 otherwise

% : is_prescribed_y −> 1 if y displacement is prescribed,

% 0 otherwise

• fbc - Force boundary conditions

% fbc: [numDBC x 5 double] −> Array of force boundary

% conditions

% : (node, fx, fy)

% : node −> node id
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% : fx −> prescribed x nodal force value

% : fy −> prescribed y nodal force value

• elems_prop - Elements’ properties

% elems_prop: [numElems x 1 integer] −> Array of element's property

% identity

% : Indexed according to the order of the properties

% cells

% : i.e. elems_prop(i) = k, then the i−th element has

% : properties given by properties{k}.

• properties - Material properties

% properties: [numProps x 1 struct] −> Array of material properties

% : (E, v, t, constitutive_model)

% : E −> elastic modulus

% : v −> Poisson coefficient

% : t −> thickness

% : constitutive_model −> function handle representing

% the incremental constitutive

% function

• params - Analysis parameters

% params : [1x1 struct] Struct of analysis' parameters

% : (max_it, steps, tol)

% : max_it −> maximum number of iterations at each

% increment

% : step −> array of increments from 0.0 to 1.0

% : tol −> numerical tolerance for the stopping

% criterion

Main procedure

The main procedure is comprised of the actual FEM implementation
for nonlinear quasi-static mechanics using the full N-R scheme. A schematic
description of the algorithm, considering a load control scheme, is depicted in
the flowchart of Figure 4.6. If the displacement control is selected the first box
of the incremental loop is replaced by the box of Figure 4.5

update prescribed and 

free delta displacements

du(nDOF_Free+1:end,1) = u_enf(nDOF_Free+1:end,1)*params.step(inc) ... 
                       - u(nDOF_Free+1:end,1);
du(1:nDOF_Free,1) = -K_init(1:nDOF_Free,1:nDOF_Free)\ ...
                    (K_init(1:nDOF_Free,nDOF_Free+1:end)*du(nDOF_Free+1:end,1));

Figure 4.5: Displacement control update routine

DBD
PUC-Rio - Certificação Digital Nº 1712782/CA



Chapter 4. The finite element method in nonlinear solid mechanics 55

user input

generate degree of freedom map

[ dofmap,nDOF_Free ] = ...
              generateDOFMap(dbc,numNodes);

nDOF = numNodes*2;

update the trial displacements 

and reset internal data

du(1:nDOF_Free) = du(1:nDOF_Free) +  ...
         K(1:nDOF_Free,1:nDOF_Free)\(g(1:nDOF_Free));
connect = connect_init;

store the current state

connect_init = connect;

            [k,f,connect{elem}.elem_data] = ...
            connect{elem}.stiffnessMatrix(x, y,...
                                         connect{elem}.elem_data,...
                                         properties{elems_prop(elem)},...
                                         du_elem);
            
            K(dofElem,dofElem) = K(dofElem,dofElem) + k;
            Fint(dofElem) = Fint(dofElem) + f;

tangent stiffness matrix assembly

and internal force evaluation

update total displacements

 and fill step's output

u = u + du;
output{inc}.u = u(dofmap);
output{inc}.F = Fint(dofmap);
    .
    .
    .

check balance of external

and internal forces

g = (F_ext_i-Fint);
if(max(abs(g(1:nDOF_Free,1)))<tol)

update external forces and 

reset delta displacements

F_ext_i = F_ext*params.step(inc);
du = zeros(nDOF,1); 

NO
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Main procedure

Figure 4.6: Main procedure flowchart
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% Populate the output data for the current increment
u = u + du;
output{inc}.u = u(dofmap);
output{inc}.F = Fint(dofmap);
for elem = 1:numElem

nGpts = length(elem_data{elem}(:));
output{inc}.sxx{elem} = zeros(nGpts,1);
output{inc}.syy{elem} = zeros(nGpts,1);
output{inc}.sxy{elem} = zeros(nGpts,1);
output{inc}.ep_xx{elem} = zeros(nGpts,1);
output{inc}.ep_yy{elem} = zeros(nGpts,1);
output{inc}.ep_xy{elem} = zeros(nGpts,1);
output{inc}.alpha{elem} = zeros(nGpts,1);

for i = 1:length(elem_data{elem}(:))
output{inc}.sxx{elem}(i) = elem_data{elem}(i).sigma(1);
output{inc}.syy{elem}(i) = elem_data{elem}(i).sigma(2);
output{inc}.sxy{elem}(i) = elem_data{elem}(i).sigma(3);
output{inc}.ep_xx{elem}(i) = elem_data{elem}(i).ep(1);
output{inc}.ep_yy{elem}(i) = elem_data{elem}(i).ep(2);
output{inc}.ep_xy{elem}(i) = elem_data{elem}(i).ep(3);
output{inc}.alpha{elem}(i) = elem_data{elem}(i).alpha;

end
end

Listing 4.3: Output data structure population routine

Output

The program’s output is provided by routines nlfem_disp_ctrl.m and
nlfem_load_ctrl.m as the output argument, as shown in headers of Listing
4.2. The complete routine for populating the output data structure is given
in Listing 4.3. A detailed description of the output data structure is given in
Listing 4.4.

% output: [numSteps x 1 struct] Array of output structs

% : (u, f, sxx, syy, sxy, szz, ep_xx, ep_yy, ep_xy, ep_zz, alp)

% : u [numNodes x 2 double] −> Array of nodal displacements

% : f [numNodes x 2 double] −> Array of nodal internal forces

% : sij [numElems x 1 cell] −> Cell of stress components in ij

% direction at each integration pt

% : ep_ij [numElems x 1 cell] −> Cell of plastic strains in ij

% direction at each integration pt

% : alp [numElems x 1 cell] −> Array of hardening variables at

% each integration pt

% * Each cell is a

% [ngpts x 1 double] array

Listing 4.4: Output data structure description
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How to use

The coded is intended to allow the implementation of a material elasto-
plastic behavior in a straightforward manner. For this purpose, the user must
provide a function handle with the following header:

function [ elem_data, Cep ] = <function_name>( dlt_strain, ...

elem_data, ...

elem_prop )

%Inputs:

% dlt_strain: [4 x 1 double] −> Array of total strains increment

% elem_data: [cell] −> Cell containing the current elastoplastic

% variables of a given integration pt:

% : sigma: [4x1 double] −> stresses

% : ep: [4x1 double] −> plastic strains

% : alpha: [double] −> hardening variables

% elem_prop: [cell] −> Cell containg the elastoplastic

% material properties:

% : E: [double] −> elastic modulus

% : v: [double] −> Poisson coefficient

% : t: [double] −> thickness

% : constitutive_model [function handle]−>
% function representing the

% incremental constitutive function

%Output:

% elem_data: [cell] −> Cell containing the updated elastoplastic

% variables of a given integration pt:

% : sigma: [4x1 double] −> stresses

% : ep: [4x1 double] −> plastic strains

% : alpha: [double] −> hardening variables

% Cep: [4 x 4 double] −> Consistent elastoplasic tangent matrix

% associated with the implemented

% state−update procedure

which must be capable of updating the elastoplastic variables in the elem_data
field from a previous state plus the total strain increment dlt_strain. Addi-
tionally, the function must return the CETO consistent with the state-update
procedure. For instance, a linear elastic material, under an axisymmetric state,
may be simply implemented as:
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function [ elem_data, C ] = linear_axisymmetric( strain, ...

elem_data, ...

elem_prop )

E = elem_prop.E;

v = elem_prop.v;

C = E/(1+v)/(1−2*v)*[1−v v 0 v;

v 1−v 0 v;

0 0 (1−2*v)/2 0;

v v 0 1−v];

elem_data.sigma = C*strain;

end

A minimal example of a elastoplastic analysis of a circular perforated
plate under pressure using the aforementioned code is provided in Appendix
C. Hopefully such example may guide the user on how to use the program and
may serve as a template for other problems.
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5
Return-mapping algorithms using conic programming*

In light of the model outlined in Chapter 3 and considering the vectorial
notation of Eqs. (4-21) and (4-22), the optimization problem of (3-65) may be
rewritten as min

σ,α
F(σ,α)

s.t. (σ,α) ∈M
(5-1)

with F(σ,α) = 1
2(σtrial

n+1 − σ)TS(σtrial
n+1 − σ)

+1
2(αtrial

n+1 −α)TD(αtrial
n+1 −α)

, (5-2)

where S ∈ S6×6 is the symmetric compliance matrix associated with the fourth-
order compliance tensor C−1.

ConsideringM to be a conic representable set, the optimization problem
in (5-1) consists of the convex quadratic objective function (5-2) and a general
conic constraint. It is worth mentioning that such problems, in general, cannot
be tackled using classical nonlinear gradient-based algorithms. This follows
from the unsuitability of such algorithms to handle nonsmooth constraints,
which would prevent singular yield criteria from being taken into account.

To express problem (5-2) in standard form, as in (2.3), the convex
quadratic objective function is reduced to a second-order conic constraint. In
the following paragraphs the main steps of this reduction are presented.

First, introducing the auxiliary variables y1, y2 ∈ R, problem (5-1) is
restated as min

σ,α,y1,y2
y1 + y2

s.t. 1
2(σtrial

n+1 − σ)TS(σtrial
n+1 − σ) ≤ y1

1
2(αtrial

n+1 −α)TD(αtrial
n+1 −α) ≤ y2

(σ,α) ∈M

. (5-3)

Next, owing to its positive definite property, the compliance matrix
adheres to the following decomposition:

S = MTM, (5-4)

thus 1
2(σtrial

n+1 − σ)TS(σtrial
n+1 − σ) = wTw (5-5)

with
* This section was extracted from [44].
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w =
√

1
2M(σtrial

n+1 − σ). (5-6)

Similarly, assuming strict positiveness for the hardening modulus D, it
follows that D = NTN thus

1
2(αtrial

n+1 −α)TD(αtrial
n+1 −α) = zTz (5-7)

with
z =

√
1
2N(αtrial

n+1 −α). (5-8)

By taking the following identity into account

t = (t+ 1)2/4− (t− 1)2/4, t ∈ R, (5-9)

both convex quadratic forms of (5-3) may expressed as the following second-
order constraints:

y1 + 1
2 ≥

∥∥∥∥∥∥
 w

y1−1
2

∥∥∥∥∥∥ , (5-10)

y2 + 1
2 ≥

∥∥∥∥∥∥
 z

y2−1
2

∥∥∥∥∥∥ . (5-11)

Collecting these results and assumingM to be a conic representable set,
it is straightforward to express problem (5-1) as a general conic program, i.e.,

min
x

cTx
s.t. Ax = b

x ∈ K =M×Q6 ×Q1

, (5-12)

where the design variables are collected in x as

x = [σ,α, y1,w, y2, z]T , (5-13)

the vector c is given as
c = [0, 0, 1, 0, 1, 0]T , (5-14)

the linear constraints are expressed as

A =
√1

2M 0 0 Id 0 0
0

√
1
2N 0 0 0 Id

 , b =
√1

2Mσtrial
n+1√

1
2Nαtrial

n+1

 , (5-15)

whereas Q6 and Q1 are second order cones associated with inequalities (5-10)
and (5-11), i.e.,

Qn =

(p,q) ∈ R× Rn

∣∣∣∣∣∣ p+ 1
2 ≥

∥∥∥∥∥∥
 q

p−1
2

∥∥∥∥∥∥
 . (5-16)

Therefore, K (in Eq. (5-12)) is a proper cone given as the Cartesian product
of convex conesM, Q6, and Q1 [51].

Considering second-order cone representable yield criteria, such as those
introduced in Section 3.1, the discrete elastic constitutive IVP (3-43) is reduced
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to a second order cone program:

min cTx
s.t. Ax = b

x ∈ CSOC =MCQR ×Q6 ×Q1

, (5-17)

whereMCQR is a conic quadratic representable set of admissible stresses and
CSOC is a second order cone given as the Cartesian product of three second-
order cones.

For semidefinite cone representable yield criteria, such as those presented
in Section 3.1, the discrete elastoplastic constitutive IVP (3-43) is reduced to
a mixed linear, conic quadratic and semidefinite program:

min
xl,xq ,xs

cqTxq

s.t. Alxl + Aqxq +Asxs = b̂
xl ∈ R6,xq ∈ Q6 ×Q1,xs ∈ CPSD

(5-18)

where cq is given as
cq = [1, 0, 1, 0]T . (5-19)

The design variables are collected as

xl = [σ,α]T

xq = [y1,w, y2, z]T
(5-20)

and the linear constraints are defined as

Alxl + Aqxq +Asxs = b̂ ≡



w =
√

1
2M

(
σtrial
n+1 − σ

)
z =

√
1
2N

(
αtrial
n+1 −α

)

Mat3×3 (xs) =


σ1 σ4 σ5

σ4 σ2 σ6

σ5 σ6 σ3


. (5-21)

It is worth noting that CP problems (5-17) and (5-18) are guaranteed
to be primal and dual feasible, i.e., both admit primal and dual optimal
solutions. This result follows from the fact that, given an unstressed state,
i.e., (0, α) ∈ intM, we can arbitrarily choose the free variables y1, y2 such that
(y1,w) ∈ intQ6 and (y2, z) ∈ intQ1. Therefore, clearly, ∃(x, z) ∈ intK× intK∗.

5.1
Consistent elastoplastic tangent operator numerical evaluation scheme

Linearization of the virtual work principle, introduced in Section 4.3,
requires the evaluation of the CETO, which is given as

Cep = ∂σ̂(εn+1,αn)
∂εn+1

= ∂σ̂(εtrial
n+1,α

trial
n+1)

∂εtrial
n+1

(5-22)
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where the incremental constitutive function σ̂ implicitly defines the stress at
a pseudo-time tn+1 in terms of trial strains and hardening variables.

According to the MP approach employed herein, the implicit constitutive
function σ̂ may be defined as the argument of the optimization problem in
(5-1), i.e.,

σ̂
(
εe trial
n+1 ,αtrial

n+1

)
= ARG

[
min

(σ,α)∈M
F(σ,α)

]
. (5-23)

In this setting, the corresponding CETO may be obtained as the first-order
parameter derivative of the corresponding optimal solution.

For instance, consider a second-order cone representable yield criterion
for which the discrete elastoplastic constitutive IVP (3-43) is solved using the
second-order cone program (5-17). Differentiating the optimality conditions of
such problem, with respect to εe trial

n+1 , yields a system of linear equations as in
(2-28), with the right-hand side given as

b′ =
 √1

2MCe

0

 , (5-24)

where Ce ∈ S6×6 is the symmetric elasticity matrix corresponding to the array
representation of the elasticity tensor C, obtained from

Ce = ∂σtrial
n+1

∂εtrial
n+1

, (5-25)

and
c′ = ∂ [0, 0, 1, 0, 1, 0]T

∂εtrial
n+1

= 0. (5-26)

Such expressions evidence the differentiability of the problem data with
respect to εe trial. Therefore, under strict complementarity and primal-dual
nondegeneracy, the solution of system (2-28) leads to the derivative of the
optimal solutions of problem (5-17) with respect to the elastic trial strain
εe trial
n+1 , i.e.,

x′ =
[
∂σ̂(εtrial

n+1,α
trial
n+1)

∂εtrial
n+1

,
∂α̂(εtrial

n+1,α
trial
n+1)

∂εtrial
n+1

, . . .

]T

. (5-27)

Therefore, the CETO is readily recovered by collecting the relevant elements
of x′, i.e.,

Cep = ∂σ̂(εtrial
n+1,α

trial
n+1)

∂εtrial
n+1

. (5-28)

An identical scheme may be employed in the evaluation of the CETO in
the case of semidefinite cone representable yield criteria for which the discrete
elastic constitutive IVP (3-43) is solved using the semidefinite cone program
(5-18).
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KKT Jacobian Nonsingularity Condition

Owing to the projective feature of the closest point projection (3-65) and
the assumed convexity of the yield criteria, MP problem (5-1) is guaranteed
to have an unique solution [40]. Therefore, it is possible to cast (5-1) as an
equivalent CP problem which will also have primal-dual unique solutions. In
[46] and [42], it is shown that under uniqueness of optimal solutions, primal-
dual nondegeneracy follows from strict complementarity. Hence, in order to
show that the CETO may be recovered as a first-order parameter derivative,
it suffices to demonstrate that the optimal solutions of problems (5-17) and
(5-18) are strictly complementary. Although this property must be analyzed
for each case, it is possible to prove that strict complementarity holds for all
yield criteria considered in this text. The proof of strict complementarity for
CP problems involving the Drucker-Prager and von Mises criteria is detailed
in the following.

Strict Complementarity solutions of discrete IVPs via CP
Definition 5.1 Let CSOC be a second-order cone. Its interior and boundary
are defined as

int CSOC = {x ∈ Rn | x1 > ‖x2:n‖, x1 > 0} ,
bd CSOC = {x ∈ Rn | x1 = ‖x2:n‖, x1 ≥ 0} .

(5-29)

Definition 5.2 Let x (y, z) be the optimal primal and solutions for problem
(2-15). Then (x,y, z) satisfies strict complementarity if and only if x + z ∈
int CSOC.

Every second-order cone representable yield criterion can be written, in
vectorial form, as

MSOCR =
{

(σ, α) ∈ R6 × R | ‖Lσ‖ ≤
(
κ0 + h̄α

)
− bTσ

}
(5-30)

with arbitrary constants L ∈ R6×m, b ∈ R6, κ0 ∈ R, and h̄ ∈ R.
Formulating (5-17) as a dual conic program leads to

max
y,z

bTy

s.t. AT
i y + zi = ci

zi ∈ QSOC

(5-31)

with dual variables
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z1 = (κ, s) y1 = (σ, α)
z2 = (t11, t12, a1) y2 = t1

z3 = (t21, t22, a2) y3 = t2

(5-32)

where the objective function is given as

bTy = −1
2t1 −

1
2t2 (5-33)

and the linear constraints are given as

AT
1 y + z1 = c1 ≡


κ =

(
κ0 + h̄α

)
− pTσ

s = Lσ

AT
2 y + z2 = c1 ≡



t11 = t1+1
2

t12 = t1−1
2

a1 = S 1
2
(
σtrial − σ

)

AT
3 y + z3 = c3 ≡



t21 = t2+1
2

t22 = t2−1
2

a2 = h
1
2
(
αtrial − α

)

(5-34)

The primal problem, dual to (5-31), is thus given as

min
x

cTx
s.t. ∑

i Aixi = b
xi ∈ QSOC

(5-35)

with primal variables
x1 = (κ̄, s̄)
x2 =

(
t̄11, t̄12, ā1

)
x3 =

(
t̄21, t̄22, ā2

) (5-36)

and the linear constraints are given as

∑
i

Aixi = b ≡



pκ̄− LTs̄ + S 1
2 a1 = 0

−h̄κ̄ = −h 1
2a2

−1
2 t̄11 − 1

2 t̄12 = −1
2

−1
2 t̄21 − 1

2 t̄22 = −1
2

(5-37)

In order to show that the optimal solutions for (5-17) satisfiy strict
complementarity, it is left to demonstrate that

xi + zi ∈ Q(i)
SOC, i = 1, 2, 3. (5-38)

Equivalently, as noted in [42], we can show that none of the following
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states are possible:

(1) xi ∈ bdQ(i)
SOC, zi = 0

(2) xi = 0, zi ∈ bdQ(i)
SOC

(3) xi = 0, zi = 0
. (5-39)

Using the third and fourth rows of Eq. (5-37), and taking Lemma 3 into
account, we note that

t11 − t12

β1
= 1, β1 = t11

t̄11
,

t21 − t22

β2
= 1, β2 = t21

t̄21
.

(5-40)

Hence, according to rows (3,4,5,6) of Eq. (5-34), we have

t11 − t12 = 1 =⇒ β1 = 1 =⇒ t11 = t̄11, (t12, a1) = −(t̄12, ā1),
t21 − t22 = 1 =⇒ β1 = 1 =⇒ t21 = t̄21, (t22, a2) = −(t̄22, ā2).

(5-41)

Moreover, according to the second row of Eq. (5-37)

−h̄κ̄ = h
1
2 ā2 = −h 1

2 a2 = h
(
αtrial − α

)
=⇒ κ̄ = h

h̄
∆α > 0 (5-42)

Therefore, given that the trial state will always lie outside the yield
criterion and that t1, t2 are strict positive, it is clear that

xi 6= 0, i = 1, 2, 3. (5-43)

Thus states (2) and (3) of Eq. (5-39) are not possible. To show that state (1) is
also not possible, a particular yield criterion must be analyzed. For instance, if
we select the von Mises yield criterion it is clear that state (1) is unreachable.
In this case the strict positiveness of κ =

(
κ0 + h̄α

)
> 0 implies that z1 6= 0.

Considering the Drucker-Prager criterion, condition z1 6= 0 only takes place
when the updated state belongs to the apex of the yield surface. In this case, as
noted in [7], the trial state must belong to the complementary cone. Moreover,
if we solve the first row of Eq. (5-37), considering a hydrostatic stress state,
we can identify the norm of s̄ as

‖s̄‖ = J2(Σtrial
n+1)
G

(5-44)

whereas the dual variable κ̄ is equivalent to the plastic multiplier ∆γ, i.e.,

κ̄ = ∆γ. (5-45)

Therefore, according to [7] (Section 8.3.1), whenever the updated stress lies at
the apex, the following must hold
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J2(Σtrial
n+1)
G

−∆γ < 0. (5-46)

This implies that (κ̄, s̄) ∈ intQ(1)
SOC. Hence, even when the updated stress lies

at the apex, the optimal solutions for the CP problem involving the Drucker-
Prager yield criterion satisfy strict complementarity.

With similar considerations, it is also possible to prove that the positive
semidefinite representable yield criteria considered in this work satisfy the Ja-
cobian nonsingularity condition. In particular, considering the Mohr-Coulomb
criterion in the framework of CP problem (5-18), it is possible to prove that
the Jacobian of KKT conditions will be nonsingular even when the updated
stress lies on the edges or the apex of the Mohr-Coulomb surface.

DBD
PUC-Rio - Certificação Digital Nº 1712782/CA



6
Numerical examples*

6.1
Finite step accuracy and iso-error maps

A key aspect in the numerical analysis of elastoplastic problems is the
finite step accuracy of the integration algorithms employed in the solution of
the elastoplastic IVPs. In theory, it is possible to demonstrate accuracy order
of an integration algorithm in terms of sufficiently small strain increments
[63]. However, for practical problems, it is crucial to investigate the accuracy
of such algorithms for increasing increments. The finite step accuracy of the
proposed integration algorithms is assessed using iso-error maps [64]. This
is a systematic method for testing the accuracy of state-update procedures
and has been employed in many studies [62], [65], [66], [67]. Such maps are
generated by prescribing a sequence of strain increments to an initial stress
state corresponding to a point on the yield surface. The approximate numerical
solution is obtained by applying the integration algorithm in a single step. The
error is then evaluated as the difference between the numerical σnum and exact
solutions σexact. In this work the following error definition is adopted:

ε =

√
(σexact − σnum) · (σexact − σnum)

√
σexact · σexact

× 100. (6-1)

Owing to the lack of analytical solutions for practical problems, the “ex-
act” solution is obtained by dividing the strain increment into a sufficiently
large number of subincrements. This procedure is valid whenever the inte-
gration algorithm is, at least, first-order accurate, which is true for the fully
implicit scheme employed in this study. In the following sections, the iso-error
maps of the proposed integration algorithm are presented. For comparison with
other traditional RMA, the same iso-error maps are generated using the state-
update procedures of the HYPLAS library [7]. In accordance with [7] and [62],
the “exact” solutions are obtained by dividing each strain increment into 1000
sub-steps.

* This chapter was extracted from [44].
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Drucker-Prager iso-error map

To assess the accuracy of the integration algorithm based on the second-
order conic program (5-17), consider a perfectly plastic Drucker-Prager model
with the Young’s modulus E = 20MPa, Poisson’s ratio ν = 0.4, and remaining
parameters chosen to match the outer edges of the Mohr-Coulomb surface with
friction angle of φ = 36◦ and cohesion of c = 0.2MPa, i.e.,

γ = 6sin(φ)√
3 (3− sin(φ))

, κDP = 6cos(φ)c√
3 (3− sin(φ))

. (6-2)

According to [68], these material parameters are within a realistic range of
values for a typical saturated soil present in coastal ranges of southeastern
Brazil.

Considering a point σi on the yield surface, the unit stress increment
directions n and t are chosen as the normal and tangential directions at σi,
respectively, as depicted in Figure 6.1.

tn

�
i

�� ��

��

Figure 6.1: Stress increment directions for the Drucker-Prager model.

The iso-error map shown in Figure 6.2 is generated by evaluating the
error between the “exact” and numerical solutions of the following trial stress
states:

σtrial = σi + ∆σTt + ∆σNn, (6-3)
where ∆σT and ∆σN are scalar parameters that control the magnitude of the
stress increment in the tangent and normal directions, respectively. The initial
point σi employed in this example corresponds to a pure shear stress state in
which the nonzero components are σxy = σyx = κDP .
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Figure 6.2: Iso-error map for the Ducker-Prager model.

As expected, both integration algorithms give virtually the same results.
This is because both algorithms are based on the fully implicit scheme, which
is the main factor for the finite step accuracy of the method. Nevertheless, the
agreement between the results shows that the proposed approach is as accurate
as traditional RMAs.

Mohr-Coulomb iso-error maps

The accuracy of the integration algorithm based on the positive semidef-
inite conic program (5-18) is investigated by generating iso-error maps for
a perfectly plastic Mohr-Coulomb model. The same material parameters em-
ployed in [69] for the modeling of a sandy shale layer present in a cross section
of a deep coal mine in China, i.e., Young’s modulus E = 6200MPa, Poisson’s
ratio ν = 0.23, friction angle of φ = 28◦ and cohesion of c = 1MPa are adopted.
For the construction of the iso-error maps, three different initial stress states
on the Mohr-Coulomb yield surface are considered: point σA at the middle
of an edge; points σB and σC at the intersections of the adjacent edges. The
directions tA, tB, and tC are chosen as the tangential directions to the edges
belonging to the deviatoric plane, as shown in Figure 6.3. The direction nA is
the normal direction to the yield surface at point σA, whereas nB and nC are
given by the arithmetic mean of the normals of the adjacent edges at σB and
σC , respectively. The nonzero components of the specific initial stress states
employed in this example are:
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σAxx = c cos(φ)
2 (sin(φ)+3) −

c cos(φ)
sin(φ)−3

σAyy = c cos(φ)
2 (sin(φ)+3) −

c cos(φ)
sin(φ)−3

σAzz = 2 c cos(φ)
sin(φ)−3 −

c cos(φ)
sin(φ)+3

σAxy = 3 c cos(φ)
2 (sin(φ)+3)

σBxx = −2 c cos(φ)
sin(φ)−3

σByy = −2 c cos(φ)
sin(φ)−3

σBzz = 4 c cos(φ)
sin(φ)−3

σCxx = c cos(φ)
sin(φ)+3

σCyy = c cos(φ)
sin(φ)+3

σCzz = −2 c cos(φ)
sin(φ)+3

σCxy = 3 c cos(φ)
sin(φ)+3

(6-4)

The iso-error maps for each initial state are presented in Figures 6.4, 6.5,
and 6.6.

��

�
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Figure 6.3: Stress increment directions for the Mohr-Coulomb model.
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Figure 6.4: Iso-error map for the Mohr-Coulomb model departing from point
A.
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Figure 6.5: Iso-error map for the Mohr-Coulomb model departing from point
B.
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Figure 6.6: Iso-error map for the Mohr-Coulomb model departing from point
C.
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Similar to the experiment using the Drucker-Prager model, both the
integration algorithms yield virtually the same results.

6.2
Boundary value problems

In this section, assessment of the performance and accuracy of the
proposed methodology is carried out by solving numerical examples commonly
found in the literature. In all the cases, the full N-R scheme is employed for
obtaining the global solution of the nonlinear equilibrium equations, whereas
the discrete local constitutive IVPs are solved via the conic optimization
problem (5-12) using the general-purpose solverMOSEK [52]. The convergence
criteria is given as in Eq. (4-40) with a numerical tolerance of εtol ≤ 1.0×10−8.

Strip-footing collapse

In this example, the elastoplastic analysis of a strip-footing on frictional-
cohesive soil is performed in order to determine its bearing capacity. The
footing has a width of B = 2m and is subjected to a vertical pressure of
p. Additionally, the footing is long enough so that a plane strain analysis may
be conducted. The soil is assumed as an infinite medium and is modeled as
a weightless Mohr-Coulomb perfectly plastic material with an associative flow
rule, elastic modulus E = 3000kPa, Poisson’s ratio ν = 0.3, frictional angle
φ = 30◦, and cohesion c = 1kPa. The corresponding finite-element model is
shown in Figure 6.7, where only one half of the cross section is discretized,
owing to the symmetry of the problem. The mesh consists of 1033 nodes and
324 eight-noded quadrilaterals with reduced integration (2×2 Gaussian points)
to avoid volume locking. The footing is assumed to be rigid and the footing/soil
interface is assumed to be frictionless. The analysis is conducted by prescribing
the vertical displacements of the nodes under the footing corresponding to the
settlement of the soil. The pressure p is then determined as the total vertical
reaction under the footing divided by the width B. Two incremental analyses
are performed by applying a total displacement of u = 0.5m in 25 and 50
equal increments. The analytical limit load for this problem is given by the
well-known Prandtl’s solution [14], which is expressed as

plim = c

(
tan2

(
π

4 + φ

2

)
eπtanφ − 1

)
cotφ. (6-5)

For the present parameters, the Prandtl’s solution predicts a limit pressure of
plim = 30.1396kN/m2.

The load-displacement curve obtained in the analysis, depicted in Figure

DBD
PUC-Rio - Certificação Digital Nº 1712782/CA



Chapter 6. Numerical examples 73

B/2=1m

L=20m

L=20m

Figure 6.7: Strip-footing finite-element model.

6.8, shows that the numerical solution is in excellent agreement with the
analytical limit load. Moreover, the accordance between the two analyses
shows that 25 increments are sufficient for attaining convergence of the
numerical solution. The error between the analytical and numerical solutions
(pNlim = 30.8953kN) is approximately equal to 2.51%.

Collapse of end-loaded cantilever

In this example, the plastic collapse of a cantilever beam subjected to
a vertical load f at its free end is studied. The beam is L = 1000mm long
and has a rectangular cross-section with a width of b = 50mm and a height of
h = 100mm. The finite-element model employed in the elastoplastic analysis
is depicted in Figure 6.9. The mesh consists of 729 nodes and 640 four-noded
quadrilateral elements. Owing to the geometry and boundary conditions, it is
expected that the out-of-plane stresses are small compared with the in-plane
ones; thus, a plane stress analysis is conducted. The plane stress state does not
require any special treatment for the incompressibility constraints. Hence, a full
integration scheme (2× 2 Gaussian points) is employed. The beam is modeled
as a von Mises perfectly plastic material with an associative flow rule, elastic
modulus E = 210GPa, Poisson’s ratio ν = 0.3, and yield limit σy = 0.24GPa.
The analysis is performed by increasing the load until collapse occurs and
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Figure 6.8: Strip-footing load-displacement curve.

the equilibrium can no longer be found for relatively small load increments.
According to [70], considering the plastic hinge approach, the analytical limit
load for this problem is given as

flim = σybh
2

4L . (6-6)

For the present parameters, the analytical limit load is flim = 30kN.

L=1000mm

P

h
=
1
0
0
m
m

b=50mm

Figure 6.9: End-loaded cantilever finite-element model.

Figure 6.10 shows the load-displacement curve obtained in the analysis.
The numerical limit load obtained via the analysis fNlim = 30.79kN is in
excellent agreement with the analytical solution, considering the plastic hinge
approach.

Stretching of perforated rectangular plate

In this classical example, the stretching of a thin perforated plate is
studied. The plate has a center hole with a radius of r = 5mm, a width
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Figure 6.10: End-loaded cantilever load-displacement curve.

of w = 36mm, a height of h = 20mm, and a depth of t = 1mm. The
stretching occurs along its longitudinal axis owing to the prescribed edge
displacements. Because of the geometry and boundary conditions, a plane
stress state is assumed throughout the analysis. The finite-element model
employed in the analysis is depicted in Figure 6.11. Only one quarter of
the model is discretized, owing to the double symmetry of the problem. The
mesh contains 861 nodes and 800 four-noded quadrilateral elements. A linearly
hardening von Mises model with the associative flow rule, elastic modulus
E = 70GPa, Poisson’s ratio ν = 0.2, yield limit σy = 0.243GPa, and hardening
modulusH = 0.2GPa is adopted. The analysis is performed by applying a total
horizontal displacement of u = 6.15mm in 22 increments.

The analysis yields the load-displacement curve shown in Figure 6.12,
where the load is obtained as the total reaction force at the edge. The evolution
of the plastic strains is illustrated in Figure 6.13, where the accumulated plastic
strain ε̄p is plotted for different steps of the analysis. Such spreading of the
plastic front is in excellent agreement with that reported in [62].

The normalized residuals obtained during the global N-R iterations are
shown in Table 6.1, indicating the accuracy of the numerical scheme for
the evaluation of the CETO. The exponential decay of the residuals shows
that the numerical evaluation of the CETO is sufficiently accurate to achieve
convergence in the N-R scheme. In fact, the convergence rate is in agreement
with the one presented in [71].
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Figure 6.11: Perforated plate finite-element model.

Table 6.1: Stretching of a perforated plate example normalized residuals

Iteration Increment 9 Increment 10 Increment 11
1 0.31× 10−2 0.20× 10−2 0.25× 10−2

2 7.84× 10−4 1.99× 10−4 2.28× 10−5

3 1.38× 10−11 1.73× 10−12 1.42× 10−11
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5

Figure 6.12: Perforated plate load-displacement curve.
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Figure 6.13: Perforated plate plastic strain evolution.
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7
Conclusions and future work

7.1
Conclusions

Considering associative plasticity and a linear isotropic hardening model,
the proposed methodology consists of a general framework for the solution of
local constitutive equations using a fully implicit scheme. Other hardening
models, such as kinematic and nonlinear, may also be considered. In fact, any
hardening model that can be represented by a conic representable potential
function, i.e., a function which gives the hardening law when differentiated
with respect to the internal variables, can be integrated into our framework.
Although RMA can find analytical solutions for the model and yield criteria
considered in this work, there are several advantages of the CP approach over
conventional RMA.

First, the proposed approach is general in the sense that non-smooth
and multisurface yield criteria are naturally accommodated in the formulation.
Additionally, in contrast to classical return-mapping algorithms, a dedicated
implementation is not needed for each yield criterion. In fact, the structure
of the program for the solution of elastoplastic constitutive IVPs via the CP
problem (5-12) remains the same; only the conic constraint representation
of each yield criterion is modified. Many of these representations are already
available in the literature [55]. However, any conic representable yield criterion
may systematically cast into a conic form by consulting dictionaries of conic
representable function and sets [40, 49, 42, 43]. Furthermore, constrained stress
states can be easily implemented by suppressing the corresponding stress
variables in the optimization problem formulation, whereas in the classical
RMA, such a case requires special treatment.

Second, as noted in [72], to ensure the strictly positive condition of the
plastic multiplier, i.e., ∆γ > 0, RMAs must artificially identify the set of active
constraints. On the other hand, in the presented approach, this condition is
enforced naturally as the KKT conditions of the CP problem (5-12).

Lastly, the proposed scheme for the numerical evaluation of the CETO
relieves the burden of finding the analytical derivatives for the implicit RMA.

DBD
PUC-Rio - Certificação Digital Nº 1712782/CA



Chapter 7. Conclusions and future work 79

Additionally, the proposed scheme is sufficiently accurate to obtain a mono-
tonic decay of residuals owing to the out-of-balance forces.

The excellent agreement between the numerical and analytical solutions
indicates that the proposed methodology is capable of solving elastoplastic
problems involving many of the most commonly found yield criteria in the
literature. In [55], Bisbos et al. show that many complex yield functions, in-
cluding anisotropic and multisurface criteria, can be cast into second-order
and/or semidefinite constraints. Therefore, complex constitutive models can
be easily implemented by employing the conic representations of the corre-
sponding yield criteria.

7.2
Future work

The theory on CP problems involving power and exponential cones has
been established over the last decades, notably in [73] and [28]. Such works
propose the extension of primal-dual interior-point algorithms for unsymmetric
cone optimization by devising new self-concordant barrier functions. Despite
such theoretical developments, it was only recently that efficient software for
conic optimization over power and exponential cones became available (e.g.,
[29], [30]). These new classes of CP methods open the possibility to include
additional sets of problems which may be cast and solve as conic programs.
Nonetheless, to the knowledge of this author, the employment of such modern
methods in plasticity remains an open field.

Within the context of this work, one of the benefits of considering these
new classes of cones is the extension of the proposed framework for other
yield criteria (e.g. Cam-Clay [74], Lade-Duncan [75], Matsuoka-Nakai [76]).
Additionally, by taking the exponential cone into account, it is possible to
formulate a nonlinear hardening curve based on the so-called modified power
law [77]. In the following, the casting of the Cam-Clay yield criterion as a
mixed exponential second-order conic constraint is presented. Subsequently,
the consideration of a nonlinear hardening is introduced and the particular
case of the modified power law is formulated.

Exponential cone representable yield criteria

The exponential cone comprises a subset of R3 defined as

Kexp = cl
{
x ∈ R3 | x1 ≥ x2e

x3
x2 , x1, x2 > 0

}
(7-1)

where cl {·} denotes the closure of set {·}.
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A particular instance of inequalities which may be represented as a
exponential conic constraint is related to the entropy function, defined as

H(x) = x log (x). (7-2)

The sublevel set of such function may be directly represented by an exponential
cone, i.e.,

H(x) ≤ t ⇐⇒ x log (x) ≤ t

⇐⇒ −x log (x) ≥ −t

⇐⇒ log
(1
x

)
≥ −t

x

⇐⇒ 1
x
≥ e

−t
x

⇐⇒ 1 ≥ xe
−t
x

⇐⇒ (1, x,−t) ∈ Kexp

(7-3)

In particular, this representation allows to cast the Cam-Clay yield
criterion [74] as a mixed exponential second-order conic constraint. In terms
of the von Mises effective stress q =

√
3J2 and pressure p, the Cam-Clay yield

criterion is defined as

f(p, q, pc) = q +Mp log
(
− p

pc

)
≤ 0, (7-4)

where M and pc are positive material constants and the yield criteria is define
only for negative pressure states, i.e., p ≤ 0.

Splitting this inequality in

q ≤ y (7-5)

and
Mp log

(
− p

pc

)
≤ −y, (7-6)

its is possible recast the Cam-Clay criterion as the intersection of a second-
order cone with an exponential cone.

Firstly, just as in Section 3.1, it is clear that inequality (7-5) may be
represented as the following second-order cone

q =
√
J2(Σ) ≤ y ⇐⇒

√
3‖s‖ ≤ y

⇐⇒ ‖s‖ ≤ y√
3

⇐⇒ ( y√
3
, s) ∈ CSOC

(7-7)

with s defined in Eq. (3-27).
As for inequality (7-6), a exponential conic representation is possible, i.e.,
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Mp log
(
− p

pc

)
≤ −y ⇐⇒ −Mp log

(
− p

pc

)
≥ y

⇐⇒ Mp log
(
−pc
p

)
≥ y

⇐⇒ − log
(
−pc
p

)
≥ − y

Mp

⇐⇒ pc ≥ −pe−
y

Mp

⇐⇒
(
pc,−p,

y

M

)
∈ Kexp

(7-8)

.
Therefore, the Cam-Clay yield criterion may be cast into the following

convex cone

MCC =
{

(σ, y) ∈ R6 × R
∣∣∣∣∣
(
y√
3
, s
)
∈ CSOC ,

(
pc,−p,

y

M

)
∈ Kexp

}
(7-9)

where
s = Lσ, p = bTσ, (7-10)

with L and b defined as in Eqs. (3-23) and (3-25), respectively.

Nonlinear hardening laws

The functional in Eq. (3-66), which characterize the closest point projec-
tion problem of Eq. (3-65), was derived by assuming a linear relation between
hardening forces and internal variables, as depicted in Eq. (3-42). If such as-
sumption is dropped, it is still possible to consider the same convex optimiza-
tion, as long as the objective function is changed accordingly. Specifically, if a
general nonlinear hardening law as

Θ := H(α) (7-11)

is considered, then the functional

F(Σ,Θ) = 1
2(Σtrial

n+1 −Σ) : C−1 : (Σtrial
n+1 −Σ) + G(Θ) (7-12)

must be constructed such that the KKT conditions of problem (3-65) yield the
elastoplastic equations of (3-69). For such purpose, the functional G(Θ) must
satisfy the following condition

∂G(Θ)
∂Θ

∣∣∣∣∣
n+1

= αn+1 −αn. (7-13)

In the following, a nonlinear isotropic hardening model based on a
modified power law [77] is considered and the corresponding functional is
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formulated.

Modified power-law isotropic hardening model

Consider a hardening curve such as in Eq. (3-45) with the following
exponential hardening law

θ(ε̄p) = κlim
(
1− e−bε̄p

)
(7-14)

where κlim and b are material constants which may be calibrated according
to experimental data. In terms of the variables of Sectio n 3.3, such model is
represented as

α = {ε̄p} , Θ = {θ(ε̄p)} . (7-15)
In this setting, the functional to be constructed must satisfy

∂G(θ)
∂θ

∣∣∣∣∣
n+1

= ε̄pn+1 − ε̄pn. (7-16)

Owing to the strict monotonicity of Eq. (7-14), it is possible to obtain
the inverse relation, i.e.,

θ−1 = ε̄p(θ) = 1
b

log
(

κlim

κlim − θ

)
. (7-17)

Substitution into Eq. (7-16) yield the following ordinary differential equation

∂G(θ)
∂θ

∣∣∣∣∣
n+1

= 1
b

log
(

κlim

κlim − θ

)
− ε̄pn. (7-18)

which upon integration with respect to θ gives

G(θ) = 1
b

(θ − κlim) log
(

κlim

κlim − θ

)
+ θ(1− ε̄pn). (7-19)

Therefore, the required objective function is defined as

F(Σ, θ) = 1
2(Σtrial

n+1 −Σ) : C−1 : (Σtrial
n+1 −Σ) + G(θ) (7-20)

with G(θ) given in Eq. (7-19).
The corresponding convex optimization problem may be expressed as

min
σ,θ,y1,y2

y1 + y2 + θ(1− ε̄pn)

s.t. 1
2(σtrial

n+1 − σ)TS(σtrial
n+1 − σ) ≤ y1

1
b
(θ − κlim) log

(
κlim
κlim−θ

)
≤ y2

(σ, θ) ∈M

. (7-21)

As aforementioned, the first inequality may be directly cast into a second-
order conic constraint. As for the second inequality, according to Eq. (7-3), it
can be cast into the following exponential conic constraint
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1
b

(θ − κlim) log
(

κlim

κlim − θ

)
≤ y2 ⇐⇒ (klim, klim − θ,−by2) ∈ Kexp. (7-22)

Therefore, it is straightforward to cast the convex programming problem (7-21)
into a mixed exponential second-order cone program. The optimal point to such
problem yields the solution of the discrete elastoplastic IVP (3-59) under the
nonlinear hardening law of Eq. (7-14).
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Appendix A

Proof of Lemma 2-17

Proof. Owing to the Cauchy-Schwarz inequality, it follows that

|xT
2:nz2:n| ≤ ‖x2:n‖‖z2:n‖ =⇒ xT

2:nz2:n ≥ −‖x2:n‖‖z2:n‖. (7-23)

By hypothesis x, z ∈ CSOC , hence ‖x2:n‖ ≤ x1

‖z2:n‖ ≤ z1
=⇒ ‖x2:n‖‖z2:n‖ ≤ x1z1. (7-24)

Combining inequalities (7-23) and (7-24) results in

xT
2:nz2:n ≥ −‖x2:n‖‖z2:n‖ ≥ −x1z1. (7-25)

On the other hand, the first equality in (2-17) requires that xT
2:nz2:n = −x1z1;

thus, the inequalities in (7-25) must be satisfied as equalities. The Cauchy-
Schwarz inequality holds as an equality if and only if the two vectors are
linearly dependent, hence it follows that x2:n = −αz2:n with α ≥ 0. Owing
to the inequalities induced by the hypothesis that x, z ∈ CSOC , the second
inequality in (7-25) is clearly satisfied as an equality if and only if x1 = ‖x2:n‖
and z1 = ‖z2:n‖; otherwise, it would result in a strict inequality. Therefore, we
must have x1 = ‖x2:n‖ = α‖z2:n‖ = αz1, i.e.,

α = x1

z1
=⇒ x2:n + x1

z1
z2:n = 0

=⇒ z1x2:n + x1z2:n = 0.
(7-26)

�
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Appendix B

Proof of Lemma 2-26

Proof. Given that Z is symmetric positive semidefinite, it may be decomposed
as

Z = UΛUT (7-27)
where U is an orthogonal matrix that collects the eigenvectors of Z in a
column-wise manner, and Λ = diag(λ1(Z), ..., λ6(Z)) with λk(Z) ≥ 0 ∀k. Let
W = UTXU. Then, it follows that W � 0, and consequently, the diagonal
entries of W are nonnegative, i.e., Wii ≥ 0 ∀i. Clearly 〈W,Λ〉 = 〈X,Z〉 = 0.
Given that Λ is a diagonal matrix, it follows that ∑i ΛiiWii = 0. Because
the diagonal elements of both matrices are nonnegative it follows that each
summand must be zero, i.e., ΛiiWii = 0 ∀i. Therefore, one of the following
two alternatives must hold.

(i) Λii > 0, Wii = 0
(ii) Wii > 0, Λii = 0

(7-28)

Consider an element of the product of WΛ, i.e., (WΛ)ij = WijΛjj. If
alternative (i) holds, then Wjj = 0. Consequently, given that Wjj = 0 is
positive semidefinite, the j-th row and column contain only 0, which implies
that (WΛ)ij = 0. On the other hand, if alternative (ii) holds, i.e., Λii > 0, it
follows that (WΛ)ij = 0. Therefore WΛ = 0 and, clearly, XZ = 0. �
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Appendix C

A minimal example

In this example, the elastoplastic analysis of a perforated circular plate
under internal pressure is conducted. The metal plate has inner and outter
diameters of di = 20cm and do = 20cm, respectively. The finite-element model
employed in the elastoplastic analysis is depicted in Figure 7.1. The mesh
consists of 22 nodes and 10 four-noded quadrilateral elements. Owing to the
geometry and boundary conditions, an axisymmetric analysis is conducted.
The metal of the plate is modeled as a von Mises perfectly plastic material
with an associative flow rule, elastic modulus E = 210GPa, Poisson’s ratio
ν = 0.3, and yield limit σy = 0.16MPa. The analysis is performed by increasing
the internal pressure until the limit of 12.5MPa. The input for this problem is
given in Listing 7.1.

pi

di=200mm

do =400mm

z

r

1

2

12

3 4 5 6 7 8 9 10

13 14 15 16 17 18 19 20

11

2221

Figure 7.1: Perforated circular plate under internal pressure.

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−MESH−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
coords = [10 0; %pt1

11 0; %pt2

12 0; %pt3

13 0; %pt4

14 0; %pt5

15 0; %pt6

16 0; %pt7
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17 0; %pt8

18 0; %pt9

19 0; %pt10

20 0; %pt11

10 1; %pt12

11 1; %pt13

12 1; %pt14

13 1; %pt15

14 1; %pt16

15 1; %pt17

16 1; %pt18

17 1; %pt19

18 1; %pt20

19 1; %pt21

20 1];%pt22

elem_ids = [1 2 13 12;

2 3 14 13;

3 4 15 14;

4 5 16 15;

5 6 17 16;

6 7 18 17;

7 8 19 18;

8 9 20 19;

9 10 21 20;

10 11 22 21];

numElems = 10;

connect = cell(numElems,1);

for elem = 1:numElems

connect{elem} = Q4(3); % Q4 axisymmetric element

connect{elem}.nodes = elem_ids(elem,:); % Assign nodes ids

end

elems_prop = ones(size(connect,1),1); %Elems property ids

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
%−−−−−−−−−−−−−−−−−−−−−−END OF MESH−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−BOUNDARY CONDITIONS−−−−−−−−−−−−−−−−−%
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
% Displacements

dbc = [1 0 1 0 0 %Node 1 vertical constraint

11 0 1 0 0]; %Node 11 vertical constraint

%Forces

p = 1.25e−2; %Internal pressure
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ri = 10.0; %Inner radius

fx_nodal = p*2*pi*ri*10; %Equivalent nodal force

fbc = [1 fx_nodal/2 0;

12 fx_nodal/2 0];

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
%−−−−−−−−−−−−−−−−−−−−−−−−END OF BOUNDARY CONDITIONS−−−−−−−−−−−−−−−%
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
%−−−−−−−−−−−−−−−−−−−−−−−−MATERIAL PROPERTIES−−−−−−−−−−−−−−−−−−−−−−%
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
props{1}.E = 210; %Elastic modulus

props{1}.v = 0.3; %Poisson coefficient

props{1}.t = 1; %Thickness

props{1}.sy = 0.16; %Yield limit

props{1}.H = 0.05; %Hardening modulus

%Incremental elastoplastic function

props{1}.constitutive_model = @nl_vonmises_axisymmetric;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
%−−−−−−−−−−−−−−−−−−−−−−−−END OF MATERIAL PROPERTIES−−−−−−−−−−−−−−−%
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−ANALYSIS−−−−−−−−−−−−−−−−−−−−−−−−%
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
params.max_it = 50; %Maximum iterations

params.step = [0.1;0.2;0.3;0.4;0.5;0.75;...

0.90;0.95;0.96;0.97;0.98;0.99;1.00]; %Load steps

params.tol = fx_nodal*1e−5; %Numerical tolerance

%Main procedure

[output] = fem_nonlinear_elastoplastic_load_ctrl(coords,...

connect,...

dbc,...

fbc,...

elems_prop,...

props,...

params);

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−END OF ANALYSIS−−−−−−−−−−−−−−−−−−−%
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

Listing 7.1: Circular perforated plate example input.

The @nl_vonmises_axisymmetric function handle is referenced to the
script of Listing 7.2 which consists in the computational implementation of the
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state-updated procedure for the associative von Mises model by means of the
methodology presented in Chapter 5.

function [elem_data,Cep] = ...

nl_vonmises_axisymmetric(dlt_strain,...

elem_data,...

elem_prop )

%Load decomposition L'*L = P of VM criterion

L = [ 0 0 1 0;

−sqrt(3)/3 sqrt(3)/6 0 sqrt(3)/6;

0 1/2 0 −1/2];

%Load material properties

E = elem_prop.E;

v = elem_prop.v;

H = elem_prop.H;

sy = elem_prop.sy;

%Linear Plane Strain constitutive matrix

C = E/(1+v)/(1−2*v)*[1−v v 0 v;

v 1−v 0 v;

0 0 (1−2*v)/2 0;

v v 0 1−v];

%Calculate trial values

stress_np1_trial = elem_data.sigma + C*dlt_strain;

alpha_np1_trial = elem_data.alpha;

%Trial step

sVM_np1_trial = sqrt(3)*norm(L*stress_np1_trial);

if(sVM_np1_trial <= sy + H*alpha_np1_trial)

elem_data.sigma = stress_np1_trial;

elem_data.alpha = alpha_np1_trial;

Cep = C;

return;

end

%Compliance matrix

C_inv = 1/E*[ 1 −v 0 −v;
−v 1 0 −v;
0 0 2*(v+1) 0;

−v −v 0 1];

%Cholesky compliance matrix

L_C_inv = chol(C_inv);
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%Setup the optimization problem

% addpath('C:\Program Files\Mosek\8\toolbox\r2014a');

[~, res] = mosekopt('symbcon echo(0)');

%Number of cones

num_cones = 3; %two cones for restating the problem...

%in the conic form plus the von Mises cone

%Variables dimensions

sigma_dim = 4;

s_dim = 3;

alpha_dim = 1;

a1_dim = 4;

a2_dim = 1;

y1_dim = 1;

y2_dim = 1;

y11_dim = 1;

y12_dim = 1;

y21_dim = 1;

y22_dim = 1;

kappa_dim = 1;

vars_count = 0;

%Assigning the variables ids

sigma_vars = (1:sigma_dim)';

vars_count = sigma_dim + vars_count;

s_vars = (1:s_dim)' + vars_count;

vars_count = s_dim + vars_count;

alpha_vars = (1:alpha_dim)' + vars_count;

vars_count = alpha_dim + vars_count;

a1_vars = (1:a1_dim)' + vars_count;

vars_count = a1_dim + vars_count;

a2_vars = (1:a2_dim)' + vars_count;

vars_count = a2_dim + vars_count;

y1_vars = (1:y1_dim)' + vars_count;

vars_count = y1_dim + vars_count;

y2_vars = (1:y2_dim)' + vars_count;

vars_count = y2_dim + vars_count;

y11_vars = (1:y11_dim)' + vars_count;

vars_count = y11_dim + vars_count;

y12_vars = (1:y12_dim)' + vars_count;

vars_count = y12_dim + vars_count;

y21_vars = (1:y21_dim)' + vars_count;

vars_count = y21_dim + vars_count;

y22_vars = (1:y22_dim)' + vars_count;

vars_count = y22_dim + vars_count;

kappa_vars = (1:kappa_dim)' + vars_count;
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vars_count = kappa_dim + vars_count;

%Specify the cones' types

prob.cones.type(1:num_cones) = res.symbcon.MSK_CT_QUAD;

%Specify the cones' variables

prob.cones.sub = [y11_vars;y12_vars;a1_vars; %y1 cone

y21_vars;y22_vars;a2_vars; %y2 cone

kappa_vars;s_vars]; %kappa cone

%Assign the keys ids

key1_ptr = 1;

key2_ptr = y11_dim + y12_dim + a1_dim + key1_ptr;

key3_ptr = y21_dim + y22_dim + a2_dim + key2_ptr;

%Specify the cones' keys

prob.cones.subptr = [key1_ptr;key2_ptr;key3_ptr];

%Specify lower and upper bounds

prob.blx = −Inf*ones(vars_count,1);
prob.bux = +Inf*ones(vars_count,1);

prob.blx(kappa_vars) = zeros(kappa_dim);

%Specify objective function

prob.c = zeros(vars_count,1);

prob.c(y1_vars) = 1;

prob.c(y2_vars) = 1;

%Specify constraints

num_constraints = a1_dim + a2_dim + y11_dim + ...

y12_dim + y21_dim + y22_dim + ...

s_dim + kappa_dim;

prob.a = sparse(num_constraints,vars_count);

prob.blc = zeros(num_constraints,1);

prob.buc = zeros(num_constraints,1);

row_count = 0;

% First row

r1 = 1:a1_dim;

row_count = a1_dim + row_count;

prob.a(r1,a1_vars) = eye(a1_dim);

prob.a(r1,sigma_vars) = 1/sqrt(2)*L_C_inv;

prob.blc(r1) = 1/sqrt(2)*L_C_inv*stress_np1_trial;

prob.buc(r1) = 1/sqrt(2)*L_C_inv*stress_np1_trial;

% Second row
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r2 = (1:a2_dim) + row_count;

row_count = a2_dim + row_count;

prob.a(r2,a2_vars) = eye(a2_dim);

prob.a(r2,alpha_vars) = 1/sqrt(2)*sqrt(H)*eye(alpha_dim);

prob.blc(r2) = 1/sqrt(2)*sqrt(H)*alpha_np1_trial;

prob.buc(r2) = 1/sqrt(2)*sqrt(H)*alpha_np1_trial;

% Third row

r3 = (1:y11_dim) + row_count;

row_count = y11_dim + row_count;

prob.a(r3,y11_vars) = eye(y11_dim);

prob.a(r3,y1_vars) = −1/2*eye(y1_dim);
prob.blc(r3) = 0.5;

prob.buc(r3) = 0.5;

% Fourth row

r4 = (1:y12_dim) + row_count;

row_count = y12_dim + row_count;

prob.a(r4,y12_vars) = eye(y12_dim);

prob.a(r4,y1_vars) = −1/2*eye(y1_dim);
prob.blc(r4) = −0.5;
prob.buc(r4) = −0.5;

% Fifth row

r5 = (1:y21_dim) + row_count;

row_count = y21_dim + row_count;

prob.a(r5,y21_vars) = eye(y21_dim);

prob.a(r5,y2_vars) = −1/2*eye(y2_dim);
prob.blc(r5) = 0.5;

prob.buc(r5) = 0.5;

% Sixth row

r6 = (1:y22_dim) + row_count;

row_count = y22_dim + row_count;

prob.a(r6,y22_vars) = eye(y22_dim);

prob.a(r6,y2_vars) = −1/2*eye(y2_dim);
prob.blc(r6) = −0.5;
prob.buc(r6) = −0.5;

% Seventh row

r7 = (1:s_dim) + row_count;

row_count = s_dim + row_count;

prob.a(r7,s_vars) = eye(s_dim);

prob.a(r7,sigma_vars) = −L;
prob.blc(r7) = 0;

prob.buc(r7) = 0;
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% Eighth row

r8 = (1:kappa_dim) + row_count;

row_count = kappa_dim + row_count;

prob.a(r8,kappa_vars) = eye(kappa_dim);

prob.a(r8,alpha_vars) = −1/sqrt(3)*H*eye(alpha_dim);
prob.blc(r8) = 1/sqrt(3)*sy;

prob.buc(r8) = 1/sqrt(3)*sy;

% Set accuracy parameters

% Primal feasibility tolerance for the primal solution

param.MSK_DPAR_INTPNT_CO_TOL_PFEAS = 1.0e−16;

% Solve SOCP problem

[~,res] = mosekopt('minimize echo(0)',prob,param);

elem_data.sigma = res.sol.itr.xx(sigma_vars);

elem_data.alpha = res.sol.itr.xx(alpha_vars);

elem_data.ep = elem_data.ep + dlt_strain ...

+ C_inv*(stress_np1_trial − elem_data.sigma);

% −−−−−−−−−−−Consistent Tangent Elasto−Plastic Operator−−−−−−−−−%

sub = prob.cones.sub;

subptr = prob.cones.subptr;

x = res.sol.itr.xx;

X = zeros(length(x));

for i = 1:length(subptr)−1
cone_vars = sub(subptr(i):subptr(i+1)−1);
for j = 1:length(cone_vars)

X(cone_vars(j),cone_vars(j)) = x(cone_vars(1));

end

for j = 2:length(cone_vars)

X(cone_vars(j),cone_vars(1)) = x(cone_vars(j));

X(cone_vars(1),cone_vars(j)) = x(cone_vars(j));

end

end

cone_vars = sub(subptr(end):end);

for j = 1:length(cone_vars)

X(cone_vars(j),cone_vars(j)) = x(cone_vars(1));

end

for j = 2:length(cone_vars)

X(cone_vars(j),cone_vars(1)) = x(cone_vars(j));

X(cone_vars(1),cone_vars(j)) = x(cone_vars(j));
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end

R_vars = setdiff(1:length(x), sub);

for i = 1:length(R_vars)

X(R_vars(i), R_vars(i)) = x(R_vars(i));

end

s = res.sol.itr.snx;

S = zeros(length(s));

for i = 1:length(subptr)−1
cone_vars = sub(subptr(i):subptr(i+1)−1);
for j = 1:length(cone_vars)

S(cone_vars(j),cone_vars(j)) = s(cone_vars(1));

end

for j = 2:length(cone_vars)

S(cone_vars(j),cone_vars(1)) = s(cone_vars(j));

S(cone_vars(1),cone_vars(j)) = s(cone_vars(j));

end

end

cone_vars = sub(subptr(end):end);

for j = 1:length(cone_vars)

S(cone_vars(j),cone_vars(j)) = s(cone_vars(1));

end

for j = 2:length(cone_vars)

S(cone_vars(j),cone_vars(1)) = s(cone_vars(j));

S(cone_vars(1),cone_vars(j)) = s(cone_vars(j));

end

R_vars = setdiff(1:length(x), sub);

for i = 1:length(R_vars)

S(R_vars(i), R_vars(i)) = s(R_vars(i));

end

A = prob.a;

H = [zeros(vars_count) A' eye(vars_count);

A zeros(row_count) zeros(row_count,vars_count);

S zeros(vars_count,row_count) X];

dcdx = zeros(vars_count,4);

dbdx = zeros(row_count,4);

dbdx(r1,:) = 1/sqrt(2)*L_C_inv*C;

q = [dcdx;dbdx;zeros(vars_count,4)];
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dpda = H\q;

Cep = dpda(1:4,1:4);

end

% −−−−−−−−−−−Consistent Tangent Elasto−Plastic Operator−−−−−−−−−%

Listing 7.2: State-update procedure for the von Mises model using conic
optimization.

The load-displacement curve may be plotted by accessing the appropriate
fields of the output data structure. For instance, the following piece of code:

num_step = length(params.step);

plot_pts = zeros(num_step+1,2);

for step = 1:num_step

plot_output = output{step};

P = plot_output.F(1,1) + plot_output.F(12,1);

u = plot_output.u(1,1);

plot_pts(step+1,:) = [u,P];

end

figure

plot(plot_pts(:,1),plot_pts(:,2),'−sb');

leads to the load-displacement related to the displacement of the inner layer
of the perforated plate against the equivalent force due to the inner pressure,
as depicted in Figure 7.2.
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Figure 7.2: Perforated circular plate example load-displacement curve.
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